‘ H UFR de mathématique et d'informatique HH

‘ H‘ Université de Strasbourg H‘ H

MASTER’S DEGREE IN COMPUTER SCIENCE
SCIENCE AND ENGINEERING OF NETWORKS, INTERNET, AND SYSTEMS

Internship Report

Lucian MOCAN

lucian.mocan@etu.unistra.fr

Improving the Modularity
and Robustness of the Althread Language

August 17, 2025

Supervisors

Anissa LAMANI — alamani@unistra.fr
Quentin BRAMAS — bramas@unistra.fr

Host Institution

Department of Mathematics and Computer Science
University of Strasbourg

Internship Period
June 10 — September 5, 2025

rev. 2

Lucian Mocan
rev. 2

Contents

Contents|
I Introduction|
2__Context
.1 Presentation of the Host Institution|
2.1.1 University of Strasbourg|., .
.12 UFR de Mathématique et d'Informatique]
RI3 MyRole
2.2 The Althread Languagel
22.1 Althread’sRaisond’Etrel
.22 Althread’s Architecturel
223 The Althr -B Platform|
2.3 Missions and Objectives|
2.3.1 Finishing the Implementation of User-Defined Functions|
.32 Integrating Other TER Contributions|
2.3.3 Designing and Implementing an Import and Module System]
2.3.4 TImproving and Adapting the Web-Based Platform|
B Coninbutions
3.1 Finishing the Implementation of User-Defined Functions|
B.I1 Cross-FunctionCalling].
B.12 TImplicitReturns|.
B.1.3 Control-Flow Analysis for Return Path Safety]
B.14 Handle Nested FunctionCallsl
3.2 Communication-Graph Visualization|.,
B21 ProblemsandSolutionsl,
3.2.2 Implementation Overview|
B3 TmportSupport]
B.31 Promela(@and C/C++)| ot
332 TLAH e
3.3.3 Javadcript]
B34 Python|.........
B35 GO - i
B3.6 Althreadl
B.4 The Web-based Platform|
B4.1 Virtual File System| oo oo
B.42 PackageManager.
4__Conclusion|
4.1 Summary of Contributions|. o o L
42 PersonalReflection]

4.3 Future Perspectives|

[5 Bibliography|

ADD d

Chapter 1

Introduction

In this report, I'll walk you through the work carried out during my first-year Master’s
internship in the Cursus Master en Ingénieri (CMI) in Internet, Systems, and Networks at the
University of Strasbourg. Over three months (June 10 — September 5, 2025), I contributed to the
development of Althread, an educational programming language for modeling and verifying
concurrent and distributed systems.

My main objectives were to improve Althread’s modularity and usability by implementing
a complete import and package system, finalizing user-defined functions with robust control-
flow analysis, and enhancing the web-based platform with a virtual file system, package man-
ager, and improved visualization tools. The work combines language design, compiler en-
gineering, and UI/UX development, drawing on comparative studies of existing languages
(Promela, TLA+, Python, Go, JavaScript) to inform architectural decisions. The resulting sys-
tem supports modular code organization, remote dependencies, and a modern browser-based
development environment, which positions Althread as a viable teaching tool for distributed
algorithms.

This opportunity arose under unexpected circumstances. After securing an internship in
January 2025 following an early search that began in September 2024, I had to cancel it due
to personal obligations requiring travel to the US. Fortunately, I was able to pursue a remote
internship building on my prior TER (Research Project) work on user-defined functions in the
Althread language [2]. I am grateful to my supervisors, especially Mr. Quentin Bramas, for
embracing this challenge with me, and to Mr. Pierre David for his flexibility in accommodating
my situation.

Other tasks during the internship included integrating contributions from my colleagues’
TER projects [3, 4] and writing extensive technical documentation to ensure the Althread web-
site provides clear, accessible guidance for users.

This experience reaffirmed my interest in contributing to open-source projects that mix the-
oretical research with practical applications. The true value of tools like Althread lies in their
long-term educational impact, empowering future generations of computer scientists and re-
searchers. In my opinion, this is one of the most meaningful ways to invest in the continued
relevance and impact of our field.

IThe CMI is a five-year engineering program accredited by the Réseau Figure, emphasizing research-driven
education in engineering [1].

Chapter 2

Context

2.1 Presentation of the Host Institution

2.1.1 University of Strasbourg

Founded in 1538, the University of Strasbourg is one of the oldest and most prestigious
universities in France and in the world [5]. It is widely recognized for its excellence in teaching
and research, as well as its significant contributions to culture and science.

The university serves over 55,000 students and employs more than 3,400 faculty members
and researchers, along with a comparable number of professionals across libraries, engineer-
ing, administration, and healthcare services. It comprises 35 faculties, schools, institutes, and
research units, distributed across six campuses [6].

2.1.2 UFR de Mathématique et d’'Informatique

The UFR de Mathématique et d’Informatique (Department of Mathematics and Computer Sci-
ence) is the University’s academic unit dedicated to mathematics and computer science. It
hosts a large academic community involved in advanced research and education. The depart-
ment includes around 150 professors and researchers and serves a diverse student body of
approximately 2,000 students.

The department is organized into two main divisions: Mathematics and Computer Science,
each linked to research units. The administrative structure oversees areas such as finance,
logistics and technical services, academic affairs, and other support services.

Closely affiliated with ICube [7], a prominent interdisciplinary research laboratory, the de-
partment benefits from strong collaboration between research and teaching. Many faculty
members are also active researchers within this lab.

2.1.3 My Role

My internship took place within the Computer Science division of the Department of Math-
ematics and Computer Science, led by Mr. Stéphane Cateloin. My role focused on advancing
Althread, an educational programming language, to support the division’s mission of devel-
oping innovative tools for teaching concurrent and distributed systems.

In the first year of the master’s program at the UFR, the "Distributed Algorithms" class
uses Spin and Promela to teach model checking and verification of distributed systems. My
internship aimed to enhance Althread to become a viable alternative for this class in the near
future. Through my work on user-defined functions and the import and package system, I
significantly improved Althread’s modularity, making it more suitable for educational use.

I believe my work fully aligns with the division’s core mission: advancing research and sup-
porting the education of future generations. I kept this goal in mind throughout the internship
and considered it a privilege to contribute within such a respected academic environment.

2.2 The Althread Language

To properly situate the context of Althread’s ongoing development, we have to go back to
the basics.

2.2.1 Althread’s Raison d’Etre

Distributed systems are at the forefront of technological and research advancements in to-
day’s world, and they will likely remain so for years to come. This paradigm is built on several
key pillars that aim to minimize costs, improve integration, ensure availability, reliability, and
security, all while maintaining an acceptable performance loss: resource sharing, transparency,
openness, dependability, and scalability [8].

At the heart of distributed systems lies software: algorithms that define how these systems
behave. Detecting flaws in the design of distributed systems as early as possible is critical, as
these flaws can lead to significant issues in production. In formal language, such an algorithm
is called a model. A model is a mathematical representation of a system’s behavior, expressed
through states, events, or communication patterns [9]. It provides a foundation for verifying
correctness before development begins [2].

Over the years, various tools and their accompanying languages have been developed to
model and verify distributed systems, many of which are widely used in industry. Examples
include CSP (Communicating Sequential Processes)[10], SPIN (with its language Promela)[11],
and TLA+[9]. TLA+ has gained significant traction, with notable applications at Amazon
AWS[12], Microsoft [13], MongoDB [14], and even Google, which used it to specify BGP [15]. It
has also attracted considerable academic interest [16].

While these tools are powerful and have proven their value in industry, they are not particu-
larly education-focused. For example, after lots of efforts Promela offers a somewhat extensive
visualization support [17} 18, 19} 20|, but its interface and tooling are outdated. TLA+ has seen
more recent attention, with new tools like Spectacle [21]], an interactive, web-based platform de-
veloped by engineers at MongoDB for exploring, visualizing, and sharing formal specifications
in TLA+. However, even with tools like Spectacle, the complexity of using a formal mathemat-
ical language to specify an algorithm remains a significant barrier, especially in educational
contexts. This friction can make it harder to teach distributed algorithms effectively.

Althread addresses this gap by providing an accessible alternative designed specifically
for education. It simplifies the process of exploring distributed systems and model checking,
removing potential stumbling blocks for students and educators alike. By focusing on usability
and accessibility, Althread makes it possible to teach and learn distributed algorithms without
the steep learning curve associated with more formal tools.

2.2.2 Althread’s Architecture

Before diving into the language itself, a quick overview of the underlying architecture is
useful. Althread consists of a compiler and a virtual machine (VM), both written in Rust. The
compiler parses source code into an abstract syntax tree (AST) and then translates that AST into
bytecode. The VM consumes the bytecode, executes it, and provides the runtime environment
for processes, channels, and shared variables.

Syntax overview

Rather than enumerate every syntactic rule, a few distinguishing constructs are highlighted.
Figure[2.1|shows a short program that demonstrates the most salient features: a shared block,
an always block, a process template, and the main block that instantiates the template.

1 shared { // variables available anywhere in the code
2 let N: int = 0;
3 let Start = false;

¢ always { // check if conditions are always true
7 N == 0;
8 }

0 program A() { // program template A
await Start; // waits until Start == true

1 // waits on the process’ input channel
14 await receive in (x,y) => {
15 print ("received ");

16 N =N + 1; // update the value to trigger a violation
17 ¥

20 main {

21 // start a process with program template A
22 let pa = run A();

2 // create and link a channel to A’s input

25 channel self.out (int, bool)> pa.in;

26

27 Start = true;

28 send out (125, true); // send in the channel

Figure 2.1: The shared block declares variables that are visible everywhere (note the
convention: shared variables start with an uppercase letter). The always block enforces
a safety condition that must hold in every possible execution. program A () defines a
process template that waits for the boolean Start to become true, then receives a tuple
on its input channel, prints a message, and increments N, triggering a violation of the
always condition. Finally, the main block creates an instance of 2, links a channel to its
input, sets Start to true, and sends a value through the channel.

Grammar

Althread’s grammar is expressed as a parsing-expression grammar (PEG), which guaran-
tees a single, unambiguous parse tree. The implementation relies on the Rust-based open-source
Pratt parser pest . rs [22].

A practical pitfall of PEGs is that the first rule that matches wins; therefore, more specific

rules must precede more general ones. Figure 2.2]illustrates a case where an identifier is mis-
takenly matched before a function call, leading to a parse error.

1 fn_call = { identifier ~ args_list ~ ; }
2 expression = { identifier | fn_call | ... }

Figure 2.2: If the rule identifier appears before fn_call, the parser will treat
max (1, 2) as an identifier followed by an unexpected ’ (’. Swapping the order resolves
the issue.

Compiler

The compiler uses pest . rs to parse the source code according to the PEG grammar, pro-
ducing a parse tree. From this tree, it recursively constructs an AST, which captures the hier-
archical structure of the program: top-level blocks (main, shared, program, always, £n for
function blocks), variable declarations, channel definitions, and so on.

The compilation pipeline then walks the AST, emitting bytecode for the VM and building
a global context that records all the information required at runtime. This includes runtime
data (stack, scope, global variables, and channels), program metadata (function signatures,
program templates, the current program name, and standard library bindings), and verifica-
tion flags (e.g., shared, atomic). The final artifact of the compilation phase consists of the
bytecode, a global memory layout, verification conditions, compiled user-defined functions,
and the Althread standard library [23].

Virtual machine

The VM receives the compiled artifacts, initializes its global state, and begins execution with
the instructions in the main block. It then schedules instructions from any active program in a
nondeterministic fashion, thereby modeling the interleaving of concurrent processes.

For function calls, each program maintains its own call stack, recording the caller’s byte-
code address, the return address, and the expected return type [2]. A concise description of
the VM can be found in the source directory src/interpreter/vm/ and the entry point
cli/main.rs [24].

With the core architecture established, the next step was to ensure that Althread’s features
are accessible through a modern, browser-based interface.

2.2.3 The Althread Web-Based Platform

Althread’s promise of ease of use is realized through a modern, browser-based platform.
The compiler and virtual machine are written in Rust, compiled to WebAssembly, and exposed
to the JavaScript front-end via a small shim.

WebAssembly is a low-level bytecode format designed to run efficiently in web browsers,
providing a portable and secure execution environment [25]. It offers significantly better per-
formance than JavaScript for computationally intensive tasks, though it remains slightly slower
than native code due to browser sandboxing [26]. Because all compilation, execution, and
model-checking happen locally in the browser, the platform works offline after the initial page
load: no network connection is required for any of its features.

Key editor features

* Write, compile, run. The editor sends the source to a WebAssembly module, which com-
piles it to bytecode and runs it on the embedded VM. The compiled project (bytecode,
memory layout, verification conditions) is shown to the user.

* Static safety check. A “Check” button triggers a check that analyses the program for
always/never violations; it reports a violation or declares the program safe.

* State-graph visualisation. When the check succeeds a graph of all reachable states is
rendered. Each node displays shared-variable values, the program stack, running pro-
cesses, and the status of always/never conditions. Nodes are green when no violation
is present and red otherwise. Rendering time grows with the number of states, as ex-
pected for exhaustive model-checking.

2.3 Missions and Objectives

I entered the internship with a single, clear-cut goal: make Althread an easy-to-use educa-
tional tool as quickly as possible. The work broke down into several concrete tasks, which I
describe in the subsections that follow; the detailed technical contributions are presented in the
later chapters.

2.3.1 Finishing the Implementation of User-Defined Functions

My TER work [2] left a solid foundation for user-defined functions, but a few important
gaps remained. The aim of this sub-project was to make the function implementation more
complete, while still acknowledging that the work is ongoing. The two main items on my
to-do list were:

¢ Enable the compiler and the VM to handle nested calls such as max (max (1, 3), 5).

¢ Build a control-flow graph so the compiler can verify that every function returns on all
possible execution paths.

These two tasks are essential for a robust language, though their complexities vary. When
I worked on nested function calls, I found that tasks can often bring unexpected subtasks,
making the process more complex and time-consuming. For example, in this case, I had to
deal with managing temporary stack values and creating new bytecode instructions to handle
cleanup.

2.3.2 Integrating Other TER Contributions

Last semester, together with three fellow students, I worked on Althread, each of us focus-
ing on a different aspect of the language.

The eventually block. Julien Clavel added support for an eventually block [3]. The idea
is that if a condition is false (or true) at the start of a time path, it must become true (or false)
before the last state of that path in all possible executions. I analyzed Julien’s implementation
and merged it into the main development branch.

Communication-graph visualization. Violette Lesouef created a visual communication graph,
a trace diagram that connects send and receive events with directed arrows between pro-
cesses [4]. While testing the feature, I uncovered several issues in the Althread channel imple-
mentation as well as in the way the communication graph tracks those messages. Those bugs
were fixed and the visualizer was integrated into the core code base.

Benchmarking. Théo Weber performed a set of performance and benchmarking tests. Be-
cause the project is still in an early stage, I did not focus on optimization in this report; the
benchmarking results will be useful later when the language is ready for larger case studies.

2.3.3 Designing and Implementing an Import and Module System

This was the most complex and extensive task of the internship. At first I imagined the
import system would be straightforward, but the design quickly revealed many hidden chal-
lenges. The motivation is simple: modularity. An import system lets users split a program into
reusable pieces, share code across projects, and eventually build libraries or packages.

To decide how to structure Althread’s import mechanism I performed a comparative study
of several existing languages, starting with those that were created specifically for model check-
ing. First I examined Promela (the language behind SPIN) and TLA+, because both expose the
kinds of safetyEI and livenessEI properties that Althread supports. After those two model- check-
ing languages, I surveyed a handful of other widely used programming languages like C/C++,
Python, JavaScript, Go.

2.3.4 Improving and Adapting the Web-Based Platform

Recent modifications highlighted a fundamental problem: the current UI cannot accommo-
date the new import system without a full redesign. An editor that looks polished and works
intuitively is essential, otherwise the Ul itself becomes a barrier that keeps users from trying
Althread.

Design guidelines

* Modern look and Consistency. A clean, contemporary aesthetic with uniform hover
effects, colour palettes, themes, tab styles, button shapes, icons, fonts, and text sizes.

* Accessibility. Clear labels or tool-tips, WCAG-compliantﬁ colour contrast, and platform
standard interaction patterns.

¢ CLI-replacement. Graphical wrappers for operations that would otherwise require the
command line (compile, load example, run a check).

The core UI/UX work will focus on a series of improvements, the most notable of which
are a full overhaul of the interface, the addition of a left-hand pane that combines a file explorer
with tabbed-file support, a search bar, a package manager, and a help window, the implemen-
tation of syntax-highlighting for Althread keywords and built-in constructs, and the provision
of inline error reporting that includes line/column diagnostics and clickable links.

Isafety = things that should never happen (always/never);

%liveness = things that should eventually happen (eventually).

3WCAG—compliam’c means meeting accessibility guidelines for readable contrast between text and background,
typically a ratio of at least 4.5:1 [27].

Chapter 3

Contributions

This chapter is going to follow the same chronology as in Section[2.3] The following sections
are going to tackle each of the missions by covering design considerations, implementation
details, challenges, and weak points.

3.1 Finishing the Implementation of User-Defined Functions

3.1.1 Cross-Function Calling

Previously, the compiler handled recursive 1 fn yes(n: int) -> void {
function calls by creating a temporary function 2 if n > 0 {
definition that stored only the name of the func- 3 no(n - 1);

4 return; // explicit
5 }
6 print ("yes");

tion. This allowed the function to compile, and
the definition was later updated with the com-
piled body. However, this approach worked

7 return; // explicit
only for single functions and failed when one 5| 1
function called another that had not yet been 9
added to the list of existing user-defined func- 0 £n no(n: int) -> void {
tions. As a result, such cases would fail to com- 11 if n > 0 {
pile. The code snippet in Figure illustrates 2 yes(n - 1);
this issue. Compiling the function yes would 13 b o
fail because the function no is not yet defined, lf prlgt (e .) /
. 15 // implicit return

and vice versa. o)

The solution was to introduce a loop that o
processes all user-defined functions in two 8 // yes(5); outputs:
stages. In the first stage, the compiler creates 19 // no
function definitions for all functions, storing 20 // no

everything except the compiled body. In the 21| // 1o

second stage, as each function body is com-
piled, the compiler updates the corresponding
function definition with the generated instruc-
tions. This ensures that cross-function calls are
resolved correctly, even when the called func-
tion is defined later in the code.

Figure 3.1: The function yes calls
no, and vice versa. The function no
relies on an implicit return.

3.1.2 Implicit Returns

In Althread, functions with a return type of void do not require an explicit return state-
ment [28]. Previously, the compiler applied a patch that added a return instruction at the
end of every function body, regardless of whether the return type was void or if a return
statement was already present. This behavior was incorrect and could lead to redundant or
unnecessary instructions.

The implemented fix assumes that if the user wants to exit the function early, they will

explicitly provide a return statement. For functions with a return type of void, if no explicit
return statement is present at the end of the function body, the compiler automatically adds
one. This ensures that the function behaves as expected while avoiding redundant instructions.

The code snippet in Figure 3.1|also illustrates this behavior. The function yes always exits
early and never prints yes, while the function no prints no every time, relying on an implicit
return. This example demonstrates how explicit and implicit returns are handled correctly by
the compiler after the fix.

3.1.3 Control-Flow Analysis for Return Path Safety

This was an improvement I suggested at
the end of my TER [2]. Ensuring that all pos- | fn max(a: int, b: int) —>

sible execution paths in a function have a re- ale

turn statement is tricky when the bytecode pro- if a >tb :]

duced by the Althread compiler has no rep- ,) e1:: I;Jf:naa'zz b
resentation of the hierarchy between nodes. . // return here ?
Control-flow analysis [29] solves this by map- 6 }

ping out all possible execution paths, which in 7 // return here ?

this case is used to check that functions with 8}

non-void return types always return a value.

Back then, I knew why it was needed and what Figure 3.2: The function max has ex-
it should achieve, but I wasn’t sure how to actu- ecution paths where no value is re-
ally implement it. Normally, control-flow anal- turned, violating its declared return
ysis is used for optimizations, but here the goal type (int).

is purely to guarantee return path safety.

In the example in Figure the function max is supposed to return the larger of two in-
tegers, a and b. But as written, there are code paths where it doesn’t return anything, even
though the return type is int. There are two obvious fixes: either add a return in the second
if branch and another one after the if block, or just have a single return after the whole
conditional. If the user doesn’t do one of these, the compiler should throw an error saying the
function is unsafe because it doesn’t guarantee a return value.

The main concept behind control-flow analysis, no matter the approach, is the basic block [29].
A basic block is a straight-line sequence of instructions (bytecode) that you can only enter at
the first instruction and only leave at the last, no jumps or branches in the middle. To build the
control-flow graph (CFG), the algorithm starts by creating two special nodes: entry and exit.
Then it walks through the function body, turning each statement or group of statements into
CFG nodes, linking them according to the possible flow of execution. Conditionals like i f cre-
ate branches: the then and else parts each become their own sequences of nodes, and their
open ends are rejoined later. A return marks a block as terminal and links it directly to the
exit node. At the end, any block that doesn’t end with a return is also linked to the exit node,
so every path is accounted for.

The result is a rooted, directed graph where each node represents a basic block, and edges
represent possible control transfers [29]. The entry node connects to the first block(s) of the
function, and any block with no successors connects to the exit. With this graph, it’s easy to
detect if there’s a path from entry to exit that never hits a return which is exactly what is needed
to enforce return path safety in Althread.

Once the CFG is built, as shown in Figure the compiler runs a depth-first search (DFS)
starting from the entry node to check for missing returns. The DFS keeps track of whether a
return has been encountered along each path, and if it reaches the exit node without one, it

reports the first such case it finds. When that happens, the compiler produces an error like:

Function ’fn_name’ does not return a value on all code paths.
Problem detected in construct starting at line <line #>.

This points the user directly to the construct where the problem was detected, making it
clear which part of the function needs to be fixed. The full DFS algorithm and its implementa-
tion are described in Appendix

If(Node { value: IfContro

S

RETURN
FnReturn(Node { value:

N

4
If(Node { value: IfContro

/

Figure 3.3: Control-flow graph for the max function from Figure Node 0 is the entry, Node
1 is the exit. Node 2 is the first i £ branch, Node 3 is the explicit return a; path, and Node
4 is the else if branch that currently has no return. The edge from Node 4 to EXIT is added
automatically because it’s an open end without a return.

N

1
EXIT

3.1.4 Handle Nested Function Calls

Why nested calls are a compile-time / run-time problem

The Althread compiler operates on the AST produced by the parser. At this stage, the
compiler knows the shape of an expression, for example, that the term

max (max (1, 2), l.at(0))

contains two function calls. However, it does not know the concrete values that will be pro-
duced when the program is executed. By default, the compiler attempts to evaluate the argu-
ments of a function call at compile time. In this case, the values cannot be determined statically,
so the compiler correctly refuses to fold the expression.

To execute such nested calls correctly, the compiler must ensure that the virtual machine
(VM) evaluates the inner calls first, stores their results, and then uses those results as arguments
to the outer call. This requires generating a sequence of instructions that:

1. evaluate the inner call(s),
2. store the intermediate results on the VM stack,

3. evaluate the outer call using those results, and

4. discard any temporary values that belong only to the inner calls.

In the original instruction set, there was no mechanism to discard temporary values im-
mediately after they were consumed by the outer call. As a result, the stack could end up
containing both the original temporary values, and the new tuple or result that also contains
those values. This is incorrect for two reasons: unnecessary duplication of values on the stack
and the VM’s stack cleanup logic would not remove enough elements, leaving stale values that
could corrupt later operations.

The fix is to perform the evaluation and the cleanup in a single instruction, so that the
stack is always in a consistent state. Two new byte-code instructions were introduced to solve
this. MakeTupleAndCleanup builds a tuple from a list of sub-expressions, then discards the
same number of temporary values from the stack, while ExpressionAndCleanup evaluates
an expression, then removes a configurable number of temporary values that belong to inner
calls.

Both instructions are emitted only after the compiler has fully transformed the AST into a
linear sequence of byte-code instructions. At this stage, the compiler has complete information
about:

* how many temporary values each sub-expression will produce, and

* the exact points at which these temporaries can be safely discarded without affecting
subsequent computations.

This guarantees that nested calls are executed in the correct order, with minimal stack usage
and no risk of leaving stale values behind.

Working example — Fibonacci

A good example showcasing the use of function calls as an expression is the recursive ver-
sion of the Fibonacci function in Figure It returns the sum of two function calls. On top
of that, it allows testing directly by using the result of the function call in the print function.
Executing the code displays: 55, which is the expected output. More complex edge cases were
tested but they will not be detailed in this report.

1 £fn fib(n: int) -> int {
2 if n <=1 {

3 return n;

4 }

5 return fib(n - 1) + fib(n - 2);
6 }

s main {
9 print (fib (10));
10 }

Figure 3.4: Recursive Fibonacci program. The function fib contains a nested-call expression
fib(n-1) + fib(n-2); the call print (fib(2)) in main triggers the evaluation of that
expression. The execution trace for this code is available in Appendix D} where the behavior
of the two new instructions, ExpressionAndCleanup and MakeTupleAndCleanup, can be
observed in detail.

3.2 Communication-Graph Visualization

The communication-graph visualization reconstructs the flow of messages between con-
currently running programs in Althread by analyzing the VM execution trace. Each program
state becomes a node, and each send or receive operation becomes a directed edge. This allows
inspection of the sequence and direction of communications during execution.

3.2.1 Problems and Solutions

I identified several critical issues in earlier versions, but by applying fixes I managed to
improve program discovery, event handling, and visualization.

The original algorithm for program discovery only inspected the 1ocals field of the first
VM state, which caused it to miss processes started without assignment (e.g., run B () ;) and
those created inside loops. Additionally, only programs started in main were captured, while
those spawned later inside other programs were ignored. This meant I got incomplete graphs
and duplicate name errors when variable names were reused in loops. The solution is to scan
all VM states. This way, dynamically spawned processes are detected, uniquely named, and
included in the visualization.

Event matching and clock handling also required significant improvements. Previously,
receive events were matched to sends by strict clock equality, which fails under Lamport’s
model where the receiver’s clock must be at least the sender’s clock +1. Furthermore, while
the sender’s clock was incremented for each event, the receiver’s clock was left at zero, causing
duplicate event identifiers. I corrected this by updating the receiver’s clock during each receive
event as:

receiver_clock <— max(received_clock, receiver_clock) + 1

This results in consistent ordering across processes. Additionally, I updated the JavaScript
algorithm for matching nodes and events to filter send events by matching sender and receiver
IDs, ignore already matched send nodes, and select the send event with the smallest Lamport
number less than the receiver’s timestamp. These changes avoid false matches and support
multi-process communication and broadcasts.

Another issue was the timing of edge creation. Edges were previously created in the same
pass as nodes, which could fail if the sender node had not yet been created. By separating edge
creation from node creation, we ensure all nodes exist before edges are added to the graph.

Finally, the visualization was enhanced to provide a more comprehensive view of the sys-
tem’s execution. The updated display now includes program name, PID, clock, stack contents,
and active channels for each program, offering users a clearer understanding of the runtime
state.

3.2.2 Implementation Overview

On the Rust side, the VM trace is processed to detect SEND and RECV instructions. For
receives, the previous VM state is inspected to extract the message tuple, the receiver’s clock
is updated using Lamport’s rule, and a MessageFlowEvent is recorded with the sender, re-
ceiver, message, updated clock, and the post-receive VM state. For sends, the sender’s current
clock, channel name, and VM state are recorded in a similar event structure.

With these changes, the communication-graph visualization now reliably identifies all pro-
cesses, maintains correct event ordering, and accurately represents message flow. To showcase

this, the example in Appendix |C|implements a simple leader election in a ring topology. Fig-
ure 3.5/ shows the resulting communication graph. The visualization now produces the correct
result without the previous duplicate-ID error.

P1
GV

[]
L]
L]

0 S

@

P2
(A)

2
®
®
o

@)
®

% &

P3 4 - \ 4
(A) - S

Figure 3.5: Communication graph for the leader election example in Appendix|C, Each hor-
izontal line represents a process, with events ordered from left to right. Blue arrows show
message sends and their corresponding receives, matched using Lamport timestamps.

3.3 Import Support

Import functionality is a key feature of any mature programming language. While Althread
is still in its early stages, implementing imports is essential for its growth. Imports enhance
code usability, promote modularity, and enable the creation of reusable modules and packages.
They also foster collaboration within the Althread community by allowing users to share and
organize code effectively.

To design an import system for Althread, I analyzed how imports are implemented in sev-
eral existing languages. Starting with Promela (and C/C+4+), the language currently used to
teach Distributed Algorithms at the University of Strasbourg, I then examined TLA+, Python,
JavaScript, and Go.

3.3.1 Promela (and C/C++)

Promela uses the #include "file.pml" directive to import files, identical to the pre-
processor directive in C/C++. Promela relies on a gcc call with the -E flag [30], which stops
compilation after preprocessing, and the -x c flag, which treats .pml files as C code (man
gcc). The #include directive inserts the contents of the specified file at the location of the
directive [31], effectively combining all included files into a single large file for compilation.

Key characteristics of Promela’s import system include:

* Use of C preprocessor directives (#ifndef, #define, #endif) to prevent multiple and
circular includes.

* Lack of modules, packages, or imports; all included files share a single init block as the
entry point.

* No namespaces, requiring all inline functions, variables, and process names to have
unique identifiers.

C follows the same approach as Promela, relying on the preprocessor for imports. C++,
however, introduces namespaces, which provide a way to organize and encapsulate code. For
example, a namespace math containing a function add can be accessed using math: :add ().
To make a method private, C++ provides a private declaration inside a class. While C++
namespaces offer additional features, their ability to avoid name conflicts is particularly rele-
vant for modularity and imports.

3.3.2 TLA+

TLA+ modules provide a way to organize and reuse specifications. While modules may not
always be critical for small specifications (which are often only a few hundred lines long, as
noted by Hillel Wayne, a prominent advocate for formal methods [32, 33]), they are invaluable
for structuring larger projects and improving code readability [34].

By default, all TLA+ files are modules. The two main concepts for working with modules
are EXTENDS and INSTANCE, which allow functionality from other modules to be included
and reused.

EXTENDS

The EXTENDS keyword merges the contents of another module into the current module’s
namespace. This is similar to the #include directive in Promela, where all definitions from
the included file become part of the current file. In TLA+, the LOCAL keyword can be used to
make certain operators private, preventing them from being accessed by other modules like in

Figure[3.6]

1 ———— MODULE math —--——-
EXTENDS Integers

N

3 LOCAL Helper(x) == x + 1 * This is private
4 Square(x) == x * X \+* This is public
5 Increment (x) == Helper (x) \x This is public, uses the private helper

Figure 3.6: EXTENDS merges the contents of the Integers module into the current mod-
ule. The Helper operator is private due to the LOCAL keyword, while Increment is
public and uses Helper internally.

INSTANCE

The INSTANCE keyword allows the inclusion of another module while keeping its contents
in a separate namespace. This approach avoids name conflicts and provides better organiza-
tion for specifications. By naming the INSTANCE, as shown in Figure its operators can be
accessed using the ! operator. This behavior differs from EXTENDS, which merges everything
into the same namespace.

1 ———— MODULE math --——-
2 I == INSTANCE Integers
3 Square (x) == I!%*(x,x)

Figure 3.7: INSTANCE creates a namespace for the Integers module, named I. The
operator Square (x) uses I to access the = operator and calculate the square of x.

Unlike EXTENDS, multiple INSTANCEs can be declared within a single module, each with
its own namespace. Additionally, marking an INSTANCE as LOCAL prevents it from being
transitively included in other modules [34].

3.3.3 JavaScript

The JavaScript import/module system is a powerful and widely used feature, as described
in the MDN documentation. However, I find that it has some limitations that can make code
organization and debugging less intuitive. For example, when importing specific functions or
objects from a module, they can be used directly by name, but there’s no clear indication of
their origin unless the file explicitly imports the entire module or uses aliases.

For instance, the following import: import { name, draw } from "square.js";
allows the use of draw () directly, but it’s not immediately clear where it came from. A more
explicit approach, such as using a namespace, would make the origin of the function clearer.
For example: square.draw () ;

This approach improves traceability and debugging but introduces its own challenges. For
example, if the file name (square. js) changes, all imports referencing it will break. A po-
tential solution could involve exporting a namespace directly from the module, like: export
square; However, this raises additional questions, such as what happens if square is already
a function or variable name within the module itself. Lastly, JavaScript uses # before a method
name, for example, to declare it as private.

Ultimately, while the JavaScript module system is flexible, it has trade-offs. Using names-
paces, file names as namespaces, or aliases each comes with its own drawbacks.

3.3.4 Python

In Python, every source file is a module, and imports provide access to its functionality [35].
For example, Figure

1 # spam.py 1 # foo.py

> def grok (x): > import bar

3 3 def grok() :

4 | pass

5 import spam 5

6 a = spam.grok (’hello’) 6 # bar.py

7 7 import foo

s from spam import grok 8 x = foo.grok()

9 a = grok("hello’) 9 # Fails: grok () 1is not yet defined
Figure 3.8: Example of importing and Figure 3.9: Example of cyclic imports causing failure
using functions from a Python mod- due to uninitialized functions.

ule. In both cases, the entirety of the
files gets executed.

Each module operates in its own isolated namespace, with global variables bound within
the module where they are defined. Importing a module executes its code to initialize the
module object, which is cached in sys.modules for reuse [36]. Python searches for modules
in the directories listed in sys . path, including;:

¢ The directory of the script being run (or the current working directory).

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules

¢ Directories specified in the PYTHONPATH environment variable.

¢ Standard library directories and site-packages.

If the module is not found, Python raises an ImportError [36].

Packages are directories containing a special __init__ .py file, which initializes the pack-
age. Submodules are accessed using dot notation, such as package . submodule. Code inside
an __name__ == ’'__main__ ' block runs only when the file is executed directly, not when
imported as a module. Private methods, in Python, are prefixed with a single or double under-
score.

Python handles cyclic imports by caching partially initialized modules in sys.modules.
However, accessing uninitialized functions or variables during a cyclic import will fail.

David Beazley [37], a leading expert in Python, emphasizes keeping imports simple and
understanding Python’s mechanisms to debug issues effectively [35].

335 Go

Go organizes code into packages, and every Go program starts execution in the main pack-
age [38]]. This means even the simplest program, such as one that only prints a message, must
be part of a package. By convention, the package name matches the last element of the import
path. For example, the math/rand package contains files that begin with package rand.

Go uses the package name to access its exported functionality, but the full import path must
be declared. For instance:

| package main | package main

3 import (3 import "fmt"

4 "fmt" 4 import "math"

5 "math/rand" 5

6) s func main () {

7 func main () { 7 fmt.Println(

8 fmt.Println(8 "Now you have %g problems.",
9 "My favorite number is", 9 math.Sqgrt (7)

10 rand.Intn(10)) 10)
11} 11}

Figure 3.10: Example of importing multiple Figure 3.11: Example of importing packages
packages using parentheses [38] without parentheses [38].

Go supports two styles of imports: using parentheses to group multiple packages (Fig-
ure or importing each package individually (Figure 3.11). While the parentheses style is
considered good practice, the individual import style may be preferred for single imports, as
it avoids unnecessary syntax. This design decision is interesting but somewhat inconsistent, as
having only the parentheses style would provide a single, uniform way to write imports.

In Go, to decide what is exported is based on if they begin with a capital letter or not. For
example, Pizza and Pi are exported names, while pizza and pi are not. This convention
simplifies visibility rules, as exported names are automatically accessible across packages [38]].

To use external imports, Go requires initializing a module with go mod init. This mod-
ule system tracks release versions and dependencies, allowing external packages to be im-
ported directly using their repository URL. For example, running go get <url> fetches the

package without requiring additional tools like pip in Python. This approach is elegant and
integrates seamlessly with version control systems like GitHub.

3.3.6 Althread

I designed this version of Althread’s import system to be quite straightforward. It draws
influence from all the languages we’ve previously discussed, but was particularly influenced
by Go, which I really liked. Table [F.1| summarises the import mechanisms of the surveyed
languages and highlights the gaps that motivated the design of Althread’s import system.

A single import block can be declared anywhere in the file. It contains a list of relative
paths from the importing file to the target file, without the . alt extension. Duplicate import
names aren’t allowed, that’s why Althread provides aliasing. Althread also checks for circular
imports and returns an error if detected. Figure demonstrates the basic import syntax and
how imported elements are accessed using the dot operator:

| import |
2 math,
cool/fib,
4 display as d
5|]
6 main {
7 print (math.max(7,3));
8 print (fib.N);
9 print (fib.fibonacci_iterative_N{());
10 fib.N = 10;
11 print (fib.fibonacci_iterative_N{());
12 // print (fib.fibonacci_iterative (fib.N, 0, 1));
13 run d.Hello();
14}

Figure 3.12: Import syntax demonstration showing namespace access with the dot oper-
ator. The commented line attempts to call a @private function, which would result in a
compilation error. The code for the imported modules can be found in Appendix

Like most languages, Althread provides a way to prevent external access to local helpers
through the @private directive. This can be applied to function blocks or program blocks,
and even allows multiple ma in blocks to coexist: adding @private before a main block makes
it invisible to importing files. Shared variables are always imported and modifiable, while con-
ditions (always/never/eventually) are imported but read-only. It is possible to add additional
conditions to imported shared variables. It would be neat to notify users when constraints con-
tradict each other, or better yet, when there’s a constraint error, show all constraints affecting
those shared variables for easier debugging.

Althread also supports remote dependencies, as shown in Appendix [F This requires a de-
pendency manager and version storage, so I implemented a package manager in the Althread
CLI that lets users add remote dependencies with a few commands. It's a neat feature that
makes code sharing easy. For versioning, I took inspiration from Rust (the language Althread’s
compiler is written in) and chose TOML with a file called alt.toml. Since Rust has plenty
of TOML parsers available, this simplified implementation significantly. There’s one caveat
though, I haven’t fully implemented packages yet. Unlike Go, Althread won’t declare pack-
ages inside files. Instead, the package name will be the enclosing folder’s name. Currently,
Althread just imports files, but the goal is to add a mod. alt file that regroups folder contents

and makes them accessible under the folder name: import [path/module_name]. I think
it’s smart to keep the current behavior while adding this new package system.

Implementing this required extensive changes to both the Althread compiler and the gram-
mar. The grammar for imports is available in Appendix[F, and I also had to update the defini-
tion of an identifier, to support multiple names joined with 7 .’ .

To achieve an important part of these tasks, I coded a module resolver that handles the
heavy lifting: validating paths, checking for circular imports, managing remote dependencies,
finding project roots, building ASTs for imported files, and returning both the AST and resolved
path to the compiler.

Import resolution would be straightforward without namespaces, but that’s where I hit
some challenges. The process seems simple: start with the main file, check for import blocks,
call the module resolver, get the AST, compile it, and merge everything into the global com-
piler context. But functions, shared variables, programs, and conditions need proper module
prefixes. I found a working solution where at each import depth, the compiler only qualifies
its own imports with the current module name, leaving parent qualification to the parent level,
see Figures[3.138.14] This worked beautifully, though I'had to delay private access checking to
a second phase after qualification.

I # root file
import [hello]

integers.max

hello.alt
import [math]

2
5]
4
max °
6

7 # math.alt

s import [integers]
9

10 # integers.alt
11 fn max(...)

Figure 3.14: Each file imports the
next level, and the compiler builds
the qualified names by traversing
this chain from the deepest level up-
ward.

Figure 3.13: Each layer represents an import depth,
with the outermost layer showing the fully quali-
fied name as seen from the root file. The compiler
qualifies names at each level, building the complete
namespace path from inside out.

The trickiest part was implementing imported channels. Previously, channels could only
be safely declared in the main block [39]. Declaring channels elsewhere would likely cause
type inference errors when receives are set up on program input channels without correspond-
ing output declarations. This made importing modules impossible since they couldn’t infer
channel types, and forced all channel declarations into the main file’s main block. I solved this
with a precompiling phase that scans the AST for all channel declarations (including imports)
and adds their definitions to the global compiler context. This approach works well and I'm
quite happy with it, but there are still a few issues to address before the end of the internship.
One edge case is declaring a 1ist of 1ists of processes, which is trickier because the analysis
needs to follow the access into the outer list and then into the inner list to determine the actual
process type.

Finally, I updated the error reporting system to properly show the filepath of the file where
the error happens, and build an error stack for improved logging and debugging.

3.4 The Web-based Platform

The modifications described earlier, together with other updates not included here due
to space constraints, required substantial changes to the Althread web editor. This section
presents two of the most significant improvements; the rest can be best appreciated by ex-
ploring the editor directly. At the time of writing, the previous stable version is available at:
https://althread.github.io/editor and the current development version, which also contains ad-
ditional updates, at: https://althread.github.io/dev/editor.

3.4.1 Virtual File System

One interesting challenge I had to tackle for the web platform was implementing a com-
plete virtual file system that runs entirely in the browser. This was necessary to make imports
work properly, because single-file programs aren’t sufficient when building a real development
environment.

Each file and directory gets a unique ID, and I store the file tree structure separately from the
actual file contents. The tree structure lives in 1ocalStorage under one key (see Appendix|F),
while each file’s content gets its own storage key. This approach works well because it enables
lazy loading of file contents.

This feature integrates with the Rust compiler. When compilation is triggered, the system
builds a flat key-value map of all files (path — content) and serializes it to pass to the Rust side.
The Rust compiler then deserializes this into a HashMap<String, String> and creates its
own VirtualFileSystem for compilation. The compiler has no idea it’s not working with
real files.

The file explorer supports all the expected operations: drag-and-drop to move files around,
context menus for operations, multi-selection for batch operations, and even ZIP export to
download entire projects. I also implemented a search feature that makes navigating larger
projects much easier.

3.4.2 Package Manager

Building a package manager for a web-based IDE was another engaging challenge. I wanted
Althread developers to be able to share code easily, so I implemented a complete dependency
management system that works entirely in the browser.

The core architecture is built around a WebPackageManager that integrates with the vir-
tual file system. When installing packages, it fetches content from GitHub using the available
API, recursively discovers all . alt files in the repository, and caches everything in localStor
age.

Packages integrate with the virtual file system. All dependencies get installed under a
deps/ directory, with each package getting its own subdirectory. The system preserves the
original directory structure from GitHub, so imports work exactly as expected. The installation
process is simple: validate the package name using WebAssembly-based validation, fetch the
content from GitHub, cache it locally, and load it into the virtual file system.

The Ul has a full-featured dialog for complete package management. Both support adding
dependencies, installing packages, viewing the cache, and managing project configuration. The
WebAssembly integration handles TOML parsing and package name validation, ensuring ev-
erything follows Althread conventions.

https://althread.github.io/editor
https://althread.github.io/dev/editor

Chapter 4

Conclusion

4.1 Summary of Contributions

During my three-month internship, I made significant progress on Althread’s capabilities
as an educational programming language for concurrent and distributed systems. My main
contributions include completing the implementation of user-defined functions with cross-
function calling support, control-flow analysis for return path safety, and nested function call
handling through new bytecode instructions. I also integrated and improved the communica-
tion graph visualization, fixing critical issues in program discovery and event matching.

The most significant contribution was designing and implementing a complete import and
package system. Drawing inspiration from modern languages like Go and Python, I created a
namespace-based system supporting both local file imports and remote dependencies, with cir-
cular import detection and proper namespace qualification. I also enhanced the web platform
with a virtual file system, package manager, and redesigned user interface featuring syntax
highlighting and comprehensive project management tools.

4.2 Personal Reflection

I really enjoyed working during this internship. I can say that I've faced the pros and
cons of doing a remote internship, but in both cases it requires lots of self-discipline and con-
tinued effort even when it gets hard and feels like giving up. The technical challenges I en-
countered, from implementing control-flow analysis to designing a browser-based package
manager, pushed me to explore areas of computer science I hadn’t previously encountered in
depth.

This internship reinforced my interest in educational technology and open-source devel-
opment. Knowing that my work will potentially impact future students learning about dis-
tributed systems provides a sense of purpose that extends beyond the immediate technical
achievements.

4.3 Future Perspectives

My internship hasn’t finished yet, I have less than four weeks remaining. One area I didn’t
explore was improving Althread’s verification capabilities. If time permits, I would like to
add an LTL (Linear Temporal Logic) block, providing more powerful notation than the cur-
rent always/never/eventually blocks, and provide access to the VM state directly within
Althread code for sophisticated verification scenarios.

While I have tested numerous edge cases, there are still issues that need fixing and compre-
hensive test coverage to establish. I also need to complete the technical documentation for all
implemented features. Looking beyond my internship, the import system and package man-
ager create the foundation for a thriving ecosystem of shared algorithms, positioning Althread
as a significant educational tool for the distributed systems community.

20

Chapter 5

Bibliography

[1] European Association for Quality Assurance in Higher Education. FIGURE — Engineering
Education by Research Universities. URL: https ://www.enga.eu/membership - database/
figure-engineering-education-by-research-universities/.

[2] Lucian Mocan. (TER) Compilation and Interpretation of Functions in the Althread Language.
Research Project (TER), University of Strasbourg, supervised by Quentin Bramas. URL:
https://lucianmocan.com/projects/althread_functions/.

[3] Julien Clavel (JulClav). add "eventually” support to althread: A lightweight threading library.
2025. URL: https://github.com/JulClav/althread.

[4] Violette Lesouef (1qpi0). add communication graph to althread: A lightweight threading library.
2025. URL: https://github.com/IgpiO/althread.

[5] Center for World University Rankings. University of Strasbourg Ranking (2024). URL: https:
//lcwur.org/2024/university-of-strasbourg.php.

[6] Université de Strasbourg. Portail des statistiques — Université de Strasbourg. URL: https://
statistiques.unistra.fr/.

[7] University of Strasbourg ICube Laboratory. ICube — Laboratory of Engineering, Computer
Science and Imagery (UMR 7357). Institution homepage. Engineering-science, computer-science
& imagery research laboratory. URL: https://en . unistra. fr/research/sciences - and -
technologies/icube - laboratory - of - engineering - computer - science - and - imagery - umr -
7357.

[8] Maarten van Steen and Andrew S. Tanenbaum. Distributed Systems 4th edition. 2025. URL:
https://www.distributed-systems.net/index.php/books/ds4/.

[9] Leslie Lamport. A High-Level View of TLA+. https://lamport.azurewebsites.net/tla/high-
level-view.html.

[10] C. A. R. Hoare. “Communicating sequential processes”. In: Commun. ACM 21.8 (Aug.
1978), pp. 666—677. 1SSN: 0001-0782. DOI: [10.1145/359576.359585. URL: https://doi.org/
10.1145/359576.359585.

[11] Gerard J. Holzmann. “The model checker SPIN”. In: IEEE Transactions on Software Engi-
neering 23.5 (1997). URL: https://spinroot.com/spin/Doc/ieee97.pdf.

[12] Chris Newcombe et al. Formal Methods at Amazon Web Services. Tech. rep. Amazon Web
Services, 2015. URL: https://lamport.azurewebsites.net/tla/formal-methods-amazon.pdf.

[13] Markus A. Kuppe et al. “Validating System Executions with the TLA+ Tools”. In: TLA+
Conference 2024. Presentation, slides/paper available online. Seattle, USA, Apr. 2024. URL:
https://conf.tlapl.us/2024/MarkusAKuppe- ValidatingSystemExecutionsWithThe TLAPlusTools.
pdf.

[14] Murat Demirbas. TLA+ Modeling of MongoDB Transactions. Slides, TLA+ Community Event
@ ETAPS 2025. Hamilton, Ontario, Canada; slides available online. May 2025. URL: https:
/[conf.tlapl.us/2025-etaps/demirbas-slides.pdf.

[15] Aman Shaikh. Specifying BGP using TLA+. Slides, TLA+ Community Event, satellite to
FM 2024. Presentation slides available online. Sept. 2024. URL: https://cont.tlapl.us/2024-
fm/slides-shaikh.pdf.

21

https://www.enqa.eu/membership-database/figure-engineering-education-by-research-universities/
https://www.enqa.eu/membership-database/figure-engineering-education-by-research-universities/
https://lucianmocan.com/projects/althread_functions/
https://github.com/JulClav/althread
https://github.com/lqpi0/althread
https://cwur.org/2024/university-of-strasbourg.php
https://cwur.org/2024/university-of-strasbourg.php
https://statistiques.unistra.fr/
https://statistiques.unistra.fr/
https://en.unistra.fr/research/sciences-and-technologies/icube-laboratory-of-engineering-computer-science-and-imagery-umr-7357
https://en.unistra.fr/research/sciences-and-technologies/icube-laboratory-of-engineering-computer-science-and-imagery-umr-7357
https://en.unistra.fr/research/sciences-and-technologies/icube-laboratory-of-engineering-computer-science-and-imagery-umr-7357
https://www.distributed-systems.net/index.php/books/ds4/
https://lamport.azurewebsites.net/tla/high-level-view.html
https://lamport.azurewebsites.net/tla/high-level-view.html
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585
https://spinroot.com/spin/Doc/ieee97.pdf
https://lamport.azurewebsites.net/tla/formal-methods-amazon.pdf
https://conf.tlapl.us/2024/MarkusAKuppe-ValidatingSystemExecutionsWithTheTLAPlusTools.pdf
https://conf.tlapl.us/2024/MarkusAKuppe-ValidatingSystemExecutionsWithTheTLAPlusTools.pdf
https://conf.tlapl.us/2025-etaps/demirbas-slides.pdf
https://conf.tlapl.us/2025-etaps/demirbas-slides.pdf
https://conf.tlapl.us/2024-fm/slides-shaikh.pdf
https://conf.tlapl.us/2024-fm/slides-shaikh.pdf

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

TLA+ Community Event & Conference. TLA+ Community Event & Conference (Homepage).
General homepage for the TLA+ Community Event & Conference series. 2025. URL: https:
//cont.tlapl.us/home/.

ResearchGate. SPIN windows showing PROMELA code for B2 Scheme and message sequence
for a simulation run. URL: https://www.researchgate.net/figure/SPIN-windows-showing-
PROMELA-code-for-B2-Scheme-and- message-sequence-for-a-simulation-run_fig1_
2531660.

ResearchGate. A part of Promela code obtained in Experiment 2. URL: https://www.researchgate.
net/figure/A-part-of-Promela-code-obtained-in-experiment-2_fig2_220772534.

MDPIL. Figure G003: [Description from article, e.g., “Diagrammatic plot from Appl. Sci. 2022,12(6)”].
URL: https ://www.mdpi.com/applsci/applsci- 12- 02990/ article _deploy/html/images/
applsci-12-02990-g003-550.jpg.

Matthias Papesch and Cora Burger. Constructivist Approach to Learning Security Protocols
(Technical Report TR-2002-09). See especially page 12 for visualization prototype. URL:
https ://www2 . informatik . uni- stuttgart.de/bibliothek/ftp/ncstrl . ustuttgart_fi/ TR-2002-
09/TR-2002-09.pdf.

William Schultz. Spectacle: Interactive web-based tool for exploring and sharing TLA+ specifi-
cations. GitHub repository; MIT license; last accessed: July 2025. 2025. URL: https://github.
com/will62794/spectacle.

pest Project Contributors. pest. The Elegant Parser. pest v2.8.0. URL: https://docs.rs/pest/
latest/pest/.

Althread Project Contributors. Internal Architecture Guide. URL: https://althread.github.io/
docs/guide/internal/architecture.

Althread Contributors. Virtual Machine Module — Althread Project. URL: https://github.com/
althread/althread/tree/53d5816baed79d6a648a8f3ad28f1f03202cfc79/interpreter/src/
vm.

W3C Community Group. Introduction. June 2025. URL: https://webassembly. github.io/
spec/core/intro/introduction.html.

Yutian Yan et al. “Understanding the performance of webassembly applications”. In: Pro-
ceedings of the 21st ACM Internet Measurement Conference. IMC "21. Virtual Event: Associ-
ation for Computing Machinery, 2021, pp. 533-549. 1SBN: 9781450391290. DOI1: 10.1145/
3487552.3487827. URL: https://doi.org/10.1145/3487552.3487827.

W3C. Web Content Accessibility Guidelines (WCAG) 2.1 - Use of Color. May 2025. URL: https:
/lwww.w3.org/TR/WCAG21/#use-of-color.

Althread Documentation. Functions — User-Defined Functions (Althread Guide). URL: https:
//althread.qgithub.io/dev/en/docs/guide/modularity/user-defined-functions/.

Steven S. Muchnick. Control-Flow Analysis (Chapter 7 in Advanced Compiler Design and Im-
plementation). Specifically chapter 7 (page 169 onwards) of the 1997 book. URL: https:
//www . scribd.com/document/323133878/Steven - S - Muchnick - Advanced - Compiler -
Design-And.

Nimble Code. Promela PreProcessing — main.c (lines 578—-614). URL: https://github.com/
nimble-code/Spin/blob/master/Src/main.c#L578-L614.

Microsoft Docs. #include Directive (C/C++). URL: https://learn.microsoft.com/en-us/cpp/
preprocessor/hash-include-directive-c-cpp?view=msvc-170.

Hillel Wayne. LinkedIn Profile. URL: https://www.linkedin.com/in/hillel-wayne.
Hillel Wayne. Consulting Services — Hillel Wayne. URL: https://hillelwayne.com/consulting/.

https://conf.tlapl.us/home/
https://conf.tlapl.us/home/
https://www.researchgate.net/figure/SPIN-windows-showing-PROMELA-code-for-B2-Scheme-and-message-sequence-for-a-simulation-run_fig1_2531660
https://www.researchgate.net/figure/SPIN-windows-showing-PROMELA-code-for-B2-Scheme-and-message-sequence-for-a-simulation-run_fig1_2531660
https://www.researchgate.net/figure/SPIN-windows-showing-PROMELA-code-for-B2-Scheme-and-message-sequence-for-a-simulation-run_fig1_2531660
https://www.researchgate.net/figure/A-part-of-Promela-code-obtained-in-experiment-2_fig2_220772534
https://www.researchgate.net/figure/A-part-of-Promela-code-obtained-in-experiment-2_fig2_220772534
https://www.mdpi.com/applsci/applsci-12-02990/article_deploy/html/images/applsci-12-02990-g003-550.jpg
https://www.mdpi.com/applsci/applsci-12-02990/article_deploy/html/images/applsci-12-02990-g003-550.jpg
https://www2.informatik.uni-stuttgart.de/bibliothek/ftp/ncstrl.ustuttgart_fi/TR-2002-09/TR-2002-09.pdf
https://www2.informatik.uni-stuttgart.de/bibliothek/ftp/ncstrl.ustuttgart_fi/TR-2002-09/TR-2002-09.pdf
https://github.com/will62794/spectacle
https://github.com/will62794/spectacle
https://docs.rs/pest/latest/pest/
https://docs.rs/pest/latest/pest/
https://althread.github.io/docs/guide/internal/architecture
https://althread.github.io/docs/guide/internal/architecture
https://github.com/althread/althread/tree/53d5816baed79d6a648a8f3ad28f1f03202cfc79/interpreter/src/vm
https://github.com/althread/althread/tree/53d5816baed79d6a648a8f3ad28f1f03202cfc79/interpreter/src/vm
https://github.com/althread/althread/tree/53d5816baed79d6a648a8f3ad28f1f03202cfc79/interpreter/src/vm
https://webassembly.github.io/spec/core/intro/introduction.html
https://webassembly.github.io/spec/core/intro/introduction.html
https://doi.org/10.1145/3487552.3487827
https://doi.org/10.1145/3487552.3487827
https://doi.org/10.1145/3487552.3487827
https://www.w3.org/TR/WCAG21/#use-of-color
https://www.w3.org/TR/WCAG21/#use-of-color
https://althread.github.io/dev/en/docs/guide/modularity/user-defined-functions/
https://althread.github.io/dev/en/docs/guide/modularity/user-defined-functions/
https://www.scribd.com/document/323133878/Steven-S-Muchnick-Advanced-Compiler-Design-And
https://www.scribd.com/document/323133878/Steven-S-Muchnick-Advanced-Compiler-Design-And
https://www.scribd.com/document/323133878/Steven-S-Muchnick-Advanced-Compiler-Design-And
https://github.com/nimble-code/Spin/blob/master/Src/main.c#L578-L614
https://github.com/nimble-code/Spin/blob/master/Src/main.c#L578-L614
https://learn.microsoft.com/en-us/cpp/preprocessor/hash-include-directive-c-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/preprocessor/hash-include-directive-c-cpp?view=msvc-170
https://www.linkedin.com/in/hillel-wayne
https://hillelwayne.com/consulting/

[34]

[35]

[36]

[37]
[38]
[39]

Learn TLA+ Guide. Modules (Core section — Learn TLA+). URL: https://learntla.com/core/
modules.html.

David Beazley. Modules and Packages: Live and Let Die! — PyCon 2015. URL: https://www.
youtube.com/watch?v=00Th1CXRaQO0.

Python Documentation. Standard Modules — Python 3 Tutorial. URL: https://docs.python.
org/3/tutorial/modules.html#standard-modules.

David M. Beazley. About — David Beazley. URL: http://dabeaz.com/about.html.
The Go Authors. A Tour of Go — Basics. URL: https://go.dev/tour/basics.

Althread Documentation. Sending Messages — Creating a Channel (Althread Guide). URL:
https://althread.qgithub.io/en/docs/guide/channels/create/#sending-messages.

https://learntla.com/core/modules.html
https://learntla.com/core/modules.html
https://www.youtube.com/watch?v=0oTh1CXRaQ0
https://www.youtube.com/watch?v=0oTh1CXRaQ0
https://docs.python.org/3/tutorial/modules.html#standard-modules
https://docs.python.org/3/tutorial/modules.html#standard-modules
http://dabeaz.com/about.html
https://go.dev/tour/basics
https://althread.github.io/en/docs/guide/channels/create/#sending-messages

Appendix A

AST

This is the resulting AST for the code snippet presented in Subsection [2.2.2] It can be repro-
duced by running the code in a local environment using the althread-cli:

althread-cli compile demo.alt

where demo . alt is the name you would give the file in which you would store the code show-

cased in Figure
shared

| —— decl

| | -— keyword: let
| |-— ident: N

| |-— datatype: int
| ‘—— value

| ‘—— int: O
‘—— decl

|—— keyword: let
|-— ident: Start

-— value
‘—-— bool: false

always
‘—-— binary_expr
|—— left
| ‘—— ident: N
|—— op: ==
‘-— right
‘-— int: O

main

| —— decl

| | —— keyword: let
| |-— ident: pa

| ‘—— wvalue

| ‘-— run: A

| —— channel decl

| -— binary_assign

| |-— ident: Start

| |-— op: =
| ‘—— wvalue:
| ‘—— bool: true
‘-— send
|-— out
‘—-— tuple
|-—— int: 125
‘-— bool: true

A

| -—— wait_control

I \
\

\

-— await case

| -— ident:

-— wailt_control
—-— await case

| -— receive
| -—— channel "in’
| -— patterns (x,V)

\

Start

—-— print
‘—-— tuple
‘-— string: "received "
| -— binary_assign
|-— ident: N
|—— op: =
‘—— value:
‘-— binary_expr
|-—— left
| ‘-— ident: N
|-—— op: +
‘—-— right
‘—— int: 1

Figure A.1: AST for the code snippet in Figure

24

Appendix B

DFS Algorithm for Detecting Missing
Returns

The compiler uses a depth-first search (DFS) on the control-flow graph (CFG) to detect the first
path in a function that does not contain a ret urn statement. The algorithm works as follows:

1. Start from the entry node with a flag indicating no return has been seen yet.
2. Maintain two tracking sets:

* visited_on_current_path: to avoid cycles in the current DFS path.
* globally_visited_tuples: to avoid reprocessing (node, return_state)
pairs.

3. For each node visited:

(a) Skip if this (node, return_state) combination has already been processed.
(b) Skip if this node is already in the current path (cycle detection).

(c) Add the node to the current path tracking set.

(d) Update the flag to t rue if the current node is a ret urn statement.

(e) If this is the exit node or a dead-end node (no successors):

e If the flag is false, report this path as missing a return and stop.
¢ Otherwise, continue to the next path.

(f) Otherwise, add all successors to the stack with the updated flag.
(g) Remove the node from the current path tracking set (backtrack).

4. Stop as soon as the first missing return is found.

The Rust implementation of this algorithm can be found in the file at:
https://github.com/althread/althread/blob/dev/interpreter/src/analysis/control_flow_graph.rs

25

https://github.com/althread/althread/blob/dev/interpreter/src/analysis/control_flow_graph.rs

Appendix C

Leader Election with Eventually Condi-
tion

1 shared {

2 let Done = false;
3 let Leader = 0;
4}

6 program A (my_id: int) {
7 let leader_id = my_id;
8 send out (my_id);

10 loop atomic await receive in (x) => {
11 print ("receive", x);

12 if x > leader_id {

13 leader_id = x;

14 send out (x);

15 } else ({

16 if x == leader_id {
17 print ("finished");
18 send out (x);

19 break;

20 }

21 }

2 }i

24 if my_id == leader_id {

25 print ("I AM THE LEADER!!!");
26 ! {

27 Done = true;

28 Leader += 1;

33 eventually {
34 Leader == 1;

35}

37 main {

38 let n = 3;

39 let a:list (proc(A));
10 for 1 in 0..n {

41 let p = run A(1i);
42 a.push (p);

43 }

44 for i in 0..n-1 {

45 let pl = a.at(i);

16 let p2 = a.at (i+1);
47 channel pl.out (int)> p2.in;

26

48 }
49 let pl = a.at(n-1);
50 let p2 a.at (0);

52 channel pl.out (int)> p2.in;

54 print ("DONE") ;
55}

Figure C.1: Leader election with an eventually condition. This program launches
three instances of A, each sending its ID around a ring of channels. A process updates
its leader_id if it receives a higher ID, and when the leader’s ID comes back to it, it
declares itself leader, sets the shared Leader variable, and terminates. The eventually
block asserts that Leader == 1 in all possible executions. This is the program used to
generate the communication graph in Figure

Appendix D

Execution Trace for Fibonacci Example

The following is the execution trace for the recursive Fibonacci program shown in Figure
It demonstrates how the virtual machine evaluates the sum of two function calls fib (n-1)
+ fib(n-2) and evaluates the result of £ib (10) and sets it as an argument to print by
using the two new instructions, ExpressionAndCleanup and MakeTupleAndCleanup, to
manage the stack and intermediate results.

1 #0: 11: eval (2)

2 #0: 11: fib () (unstack 1)

3 #0: 3: eval [0] <=1

4 #0: 3: JumpIf 5 (unstack 1)

5 #0: 6: eval ([0] - 1)

6 #0: 6: fib () (unstack 1)

7 #0: 3: eval [0] <=1

8 #0: 3: jumpIf 5 (unstack 1)

9 #0: 4: eval [0]

0 #0: 4: return "value"

n #0: 6: eval ([1] - 2)

2 #0: 6: fib () (unstack 1)

5 #0: 3: eval [0] <=1

4 #0: 3: JumpIf 5 (unstack 1)

5 #0: 4: eval [0]

6 #0: 4: return "value"

7 #0: 6: eval [1] + [0] and cleanup (unstack 2)
8 #0: 6: return "value"

19 #0: 11: make tuple (1) and cleanup (unstack 1)
20 #0: 11: print () (unstack 1)

21 #0: 11: unstack 1

2 #0: 10: end program

Figure D.1: Execution trace for the Fibonacci example. Each line shows the instruction

index, the operation performed, and the number of stack elements removed (unstack).

28

Appendix E

Import Example Modules

This appendix contains the source code for the three modules imported in the example shown

in Figure3.12

I fn max(a: int, b: int) -> int {

2 if a > b {

: return 3;

4 }
return Db;

Figure E.1: math Simple math utility function that returns the maximum of two integers.
1 shared ({

2 let N: int = 8;
3|}

@private
+ £fn fibonacci_iterative(n: int, a: int, b: int) -> int {
7 for 1 in 1..n {
8 let ¢ = a + b;
9 a = b;
10 b = c;
11 }
12 return b;
13| }
14
5 £fn fibonacci_iterative_N() -> int {

16 return fibonacci_iterative (N, 0, 1);

17| }

Figure E.2: cool/fib Fibonacci module demonstrating shared variables and private func-
tions. The shared variable N can be accessed and modified by importing modules, while
the @private function fibonacci_iterative is only accessible within this module.

1 program Hello () {
2 print ("Hi there!");
3|}

Figure E.3: display Simple display module containing a program block that prints a
greeting message.

29

Appendix F

Imports

Import grammar in Figure URL imports in Figure [F.2|and Virtual Filesystem in Figure

1 // Import block definition

2> import_block = { IMPORT_KW ~ "[" ~ import_list? ~ "]" }

3 import_list = { import_item ~ ("," ~ import_item)x ~ ","? }
i import_item = { import_path ~ (AS_KW ~ identifier)? }

5 import_path = { import_segment ~ ("/" ~ import_segment) * }
6 import_segment = { domain_identifier | identifier }

7 domain_identifier = @{ ASCII_AILPHA ~ domain_charx }

8 domain_char = _{ ASCII_ALPHANUMERIC | "_" | "." | "-" }

Figure F1: Import grammar definition showing support for both local paths and
GitHub URLs. The domain_identifier rule handles GitHub domain parsing, while
import_path supports nested directory structures.

1 import [
github.com/lucianmocan/math—-alt/algebra/integers

]

w

[S IS

main {
6 print (integers.add(1,2));

Figure F2: Remote dependency import from GitHub. The package is accessed using
the last segment of the path (integers) as the namespace identifier, following Go’s
convention.

I althread-file-system: [
{

W N

"id":"e0b971c7-bbal-42£f2-9830-b6a876ccclOl",

4 "name" :"utils",
5 "type":"directory",
6 "children": []

9 "id":"ab4cb6b89-26f4-45ec-97d8-c2c9e33387e7",
10 "name" :"main.alt",
11 "type":"file"

Figure E.3: The virtual file system tree structure stored in localStorage.

30

Table F.1: A side-by-side comparison of import mechanisms across various program-
ming languages, highlighting the design choices made for Althread.

Language Syntax Namespace / Scoping Circular-import de- Granularity Remote / URL im- Package man- Visibility modifiers

tection ports ager

Promela/ #include No (single global Guard macros Whole fileonly No None (manual None

C "file.pml" namespace) (#ifndef) prevent copy)

multiple includes; no
built-in cycle check

TLA+ EXTENDS Mod / EXTENDS merges No explicit cycle de- Whole module No None (manual) LOCAL keyword
INSTANCE Mod namespace; tection (duplicate def- (all operators) makes an operator

INSTANCE creates initions cause errors) private
a separate one (access
via Mod!)

JavaScript import {foo} Module-level names- Runtime module Named exports, No (onlylocal files) npm /yarn(ex- export / export

from "./mod. js" pace; imported sym- cache detects cycles default export, ternal) default (no
bols become local and throwsanerrorat or* as ns language-level pri-
bindings load time vate keyword)

Python import pkg.mod / Modulesactasnames- Detects cycles at Whole module; No (onlylocalfiles) pip / poetry _private naming
from pkg import paces; accessed as import time; partially- can import spe- (external) convention, __all___
name pkg.mod initialised mod- cific attributes for export control

ules may raise
AttributeError
Go import "math" Package name is a Compile-timeerrorfor Whole package Yes — import path go mod (built- Exported identifiers
namespace; accessed import cycles (only exported can be a remote in) start with a capital let-
as pkg.Func identifiers are repository URL ter; others are private
visible)

Althread import [math, Each import becomes Resolver phase checks File-level im- Yes - GitHub alt.toml @private on func-

(this] amodule; accessed via for circular imports port; future URL syntax + WebPack- tions/programs;

work) module.name and aborts with an work may (e.g. import ageManager shared vars are always

error allow symbol- [git... 1) (browser-side) public (read-only for

level imports

conditions)

	Contents

