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Chapter 1

Introduction

Althread is an educational programming language designed to model and verify distributed
systems, such as applications operating across networked environments [1]. It addresses the
limitations of traditional modeling tools, which, despite their robustness, often feature complex
syntax and outdated designs that challenge novice learners. Althread introduces a C-inspired
syntax, familiar to those with prior programming experience, while preserving the core capa-
bilities of distributed system design: managing concurrency, facilitating inter-task communica-
tion, and addressing non-determinism [1].

This dissertation extends Althread by incorporating user-defined functions, enhancing its
expressivity and applicability for educational purposes. These functions enable students to
create reusable, modular code, simplifying the design and verification of complex systems.
The work explores the significance of this contribution, detailing the challenges of distributed
systems, the principles underpinning Althread’s design, and the technical considerations of
integrating user-defined functions into its framework.

The subsequent chapters begin with an overview of the state of the art in distributed sys-
tems and modeling tools, outlining current solutions and their limitations, particularly in ed-
ucational settings. This is followed by a detailed discussion of Althread’s architecture and de-
sign, focusing on its educational goals and the technical foundations of its compiler and virtual
machine. Understanding these aspects is crucial as the implementation of user-defined func-
tions requires modifications to the language’s grammar and compilation process. The main
contribution of this work, the implementation of user-defined functions, is then presented.
This includes key design decisions, syntax and semantics, and integration with the existing
language features. Finally, a series of examples and test cases demonstrate the functionality of
the extension, and the work concludes with future directions for the continued development
of Althread.
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Chapter 2

State of the Art

2.1 Basics of Distributed Systems

Computers have evolved significantly: from single-CPU machines to powerful multi-core
processors, from isolated devices to networks of connected systems. Their core tasks, mem-
ory management and arithmetic operations, haven’t changed, yet consistent reliability remains
essential. Once limited to a few scientists, technology now powers both research and daily
life. Systems like self-driving cars, banking platforms, and streaming services depend on them,
making their robustness critical.

To address these demands, distributed systems play a key role. Tanenbaum and van Steen
define them as "a networked computer system in which processes and resources are suffi-
ciently1 spread across multiple computers" [2]. Well-designed distributed systems have several
advantages [2]:

• resource sharing: Shared storage and computing power optimize costs and enable col-
laborative use.

• transparency: Users have a seamless experience without needing to understand the inner
workings of the system (to a certain degree).

• openness: Integrate with other systems smoothly.

• dependability: Ensure availability, reliability, fault tolerance and security.

• scalability: Expand across multiple nodes with minimal performance degradation.

These benefits enable distributed systems to underpin modern computing. However, achiev-
ing them requires sophisticated algorithms to coordinate networked nodes, introducing sig-
nificant complexity due to the decentralized nature of these systems. The following section
examines these algorithms in detail.

2.2 Distributed Algorithms

Distributed algorithms orchestrate the interactions of networked computers, yet unlike a
central conductor, each node operates independently while coordinating with others. Such
algorithms have many applications. For example, Bitcoin’s consensus algorithm [3] ensures
agreement on transactions across nodes, while distributed locks in cloud storage systems like
Google Cloud Storage manage data access [4].

When executed concurrently, these algorithms face complexity due to the lack of centralized
control [5]. Key difficulties include:

• no global state: Nodes only know local data, complicating system-wide decisions.

1Here, "sufficiently" means to a degree that the system depends on multiple computers working together.
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• no global time-frame: Asynchronous actions hinder synchronized execution.

• no main coordinator: Though it provides better fault tolerance, decentralized operation
risks conflicting node behaviors.

• non-determinism: Unpredictable delays or failures disrupt coordination.

As Lynch notes, “Because of all this uncertainty, the behavior of distributed algorithms is
often quite difficult to understand” [6]. The challenges of non-determinism, lack of global state,
and asynchronous execution make it critical to formally model and verify these algorithms to
ensure their correctness, as explored in the following section.

2.3 Models and Design Verification

Detecting flaws in the design of distributed systems early is crucial. Implementation-level
testing often fails to uncover issues rooted in a system’s logic or structure. A formal model is a
mathematical representation of a system’s behavior through states, events, or communication
patterns [7, 8], and provides a foundation for verifying correctness prior to development.

Since the late 1970s, several formal methods and tools have been developed to build and
verify these models.

CSP (Communicating Sequential Processes) [8] (1978), introduced by Hoare, models con-
current systems through synchronous communication between processes. CSP uses algebraic
notation to describe how processes interact via channels, making it ideal for specifying com-
munication protocols. Its influence is evident in modern languages like Go [9] and Erlang [10],
and it supported the verification of International Space Station systems in 1999 [11]. However,
CSP’s abstract syntax can be challenging for beginners, requiring a strong grasp of process
algebra.

SPIN [12] (1997), developed by Holzmann, is a model checker for asynchronous distributed
systems. It uses PROMELA (Process Meta Language) to define system models, focusing on
process interactions and communication behaviors [13]. SPIN exhaustively verifies properties
like deadlock freedom or protocol correctness, making it valuable for applications like net-
work protocol design. Yet, PROMELA’s syntax, with constructs like guarded commands, can
feel unintuitive to students familiar with procedural programming, limiting its accessibility in
educational settings.

TLA+ [7] (1999), created by Lamport, specifies systems through state transitions and tem-
poral properties, ensuring correctness across all possible executions. Its companion language,
PlusCal, offers a more programmer-friendly syntax for describing concurrency and non-deter-
minism, which is then translated into TLA+ for verification [7]. Amazon AWS has used TLA+
since 2011 to uncover critical bugs in its cloud infrastructure [14]. Despite its power, TLA+’s re-
liance on mathematical logic and temporal formulas poses a steep learning curve, particularly
for those without formal methods training.

Despite their power, these tools present challenges, particularly for students or those new to
formal methods. Their complex syntax, such as CSP’s algebraic notation, PROMELA’s guarded
commands, and TLA+’s temporal logic, can be daunting and confusing. As distributed systems
become increasingly vital, making these tools easier to learn is crucial. Althread addresses this
challenge with its C-inspired syntax. The next section explores how Althread does this.
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2.4 Althread’s Architecture and Design

To extend Althread with user-defined functions, a clear understanding of its architecture is
essential. As introduced earlier (Chapter 1), Althread is designed as an educational language
for modeling distributed systems, focusing on intuitive syntax and the ability to simulate con-
current behavior through processes and channels. [1]. Its primary objectives include facilitating
learning through a simple, C-inspired syntax, promoting accessibility with an open-source and
cross-platform approach, enabling the modeling and verification of distributed systems, and
supporting debugging through integrated tools [1].

The Althread compiler and its virtual machine are both implemented in Rust. This decision
builds on previous development efforts and reflects a deliberate choice for a language offering
strong guarantees of memory safety, high performance, and a growing community [15, 16].

This section presents the compiler and the virtual machine, which together form the foun-
dation of Althread’s aim to simplify distributed system design.

2.4.1 The Compiler

Syntax Overview

Before examining the grammar and the construction of the Abstract Syntax Tree (AST), it is
helpful to first understand the surface syntax of Althread. Consider Figure 2.1, which shows
an example program that highlights Althread’s syntax and its use of channel-based communi-
cation:

1 shared { // block containing all global variables
2 let A = 1;
3 let B = 0;
4 let Start = false; // synchronizes processes
5 }
6

7

8 program A() { // program template A
9

10 wait Start; // waits until Start == true
11

12 // waits on the process’ input channel
13 wait receive in (x,y) => {
14 print("received ", x, " ", y);
15 };
16 }
17

18

19 main {
20

21 // starts a process with program template A
22 let pa = run A();
23 let pb = run A();
24

25 // creates and links an output channel to
26 // the input channel of the process
27 channel self.out (int, bool)> pa.in;
28 channel self.out2 (int, bool)> pb.in;
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29 Start = true;
30 send out (125, true); // send in the channel
31 send out2 (125, false);
32 }

Figure 2.1: This Althread example demonstrates global variables, program templates,
and channel-based communication. Two processes are spawned, each waiting for a
global Start signal before receiving and printing a message (e.g., received 125
true) sent via channels.

Based on this surface syntax, the next step in the compilation process is to define a formal
grammar that enables parsing and AST construction.

The Grammar

Althread’s grammar is defined as a Parsing Expression Grammar (PEG). Compared to
Context-Free Grammars (CFGs), which can produce ambiguous parse trees for complex syntax,
PEGs ensure a single, unambiguous parse. In Althread, PEGs are processed using a Rust-based
parser called pest.rs [17]. The following features of PEGs underpin Althread’s grammar:

• Ordered Choice: In PEGs, the | operator represents an ordered choice, evaluating alter-
natives sequentially and selecting the first match [18]. This deterministic behavior elim-
inates backtracking (retrying parse alternatives), a common issue in CFGs where am-
biguous rules require conflict resolution [19]. For example, in the following rule from
Althread’s grammar main_block is tried first:

blocks = { main_block | global_block | condition_block | program_block }

• No Ambiguity: PEGs produce a single parse tree for any valid input, avoiding CFG
ambiguities that can complicate semantic analysis [18, 19]. For instance, Althread’s rule
for binary expressions ensures a unique parse:

binary_expr = { unary_expr ~ (binary_operator ~ unary_expr)* }

This rule (where ~ denotes sequence) parses expressions like x + y * z unambiguously
because pest.rs implements a Pratt parser [20], a top-down operator precedence parser
effective for handling complex operator precedence and associativity.

• Unlimited Lookahead: PEGs support unlimited lookahead, allowing the parser to peek
ahead without consuming tokens, which is ideal for complex constructs [18]. In Althread,
this facilitates parsing nested structures, such as block comments:

block_comment = { "/*" ~ (!"*/" ~ ANY)* ~ "*/" }

This rule (where ! denotes negation and ANY matches any character) uses lookahead to
ensure the comment ends with "*/".

Building the Abstract Syntax Tree (AST)

The parsing phase, implemented using pest.rs [17], generates parse nodes (rule-token
pairs) that represent the syntactic structure of Althread code. The Abstract Syntax Tree (AST), a
hierarchical representation of the code, is constructed by identifying top-level program blocks
(main, shared, program, etc.) and recursively processing their internal components. This
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transforms the linear sequence of tokens into a tree structure that captures the relationships
between code elements, preparing it for compilation. The full AST of the code in Figure 2.1 is
available for reference in Appendix B.1.

Compilation Pipeline

The compilation process converts the AST into bytecode (intermediate instructions) for Al-
thread’s virtual machine. The compiler establishes a context to manage:

• The program’s stack and scope information

• Global variable declarations and their visibility

• Channels (mechanisms for inter-process communication)

• Standard library bindings

• Information about the context: shared, atomic

Each AST node is processed according to its type, handling:

• Program blocks and local variables

• Channel declarations and communication operations

• Always2/never3 conditions

The output is a compiled project containing bytecode, a global memory layout, and runtime
verification conditions executable by the virtual machine [21].

2.4.2 The Virtual Machine

The Althread virtual machine (VM), a runtime environment for executing bytecode, uses a
stack-based architecture with strong support for concurrency and channel-based communica-
tion [21, 22]. It manages program execution through several key mechanisms.

Each program maintains its own state, including a stack for local variables and an in-
struction pointer to track execution progress. The VM’s concurrency model employs non-
deterministic scheduling, where instructions are executed non-atomically by default by a single
thread, interleaving instructions from multiple processes. Atomic operations and blocks ensure
uninterrupted execution when needed. The model also supports synchronous channel com-
munication for message passing between processes and uses runtime verification to enforce
always/never conditions. The global state encompasses shared memory for global variables,
channel states for inter-process communication, and the states of all running programs.

Althread’s architecture supports predictable and concurrent execution, enabling user-defined
functions to enhance its distributed systems modeling. The next section examines how state-
of-the-art tools implement function-like constructs.

2always = check that a condition is met at each iteration.
3never = check that a condition is never met during the execution.
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2.5 Function Implementation in Distributed System Modeling Tools

A recurring theme across tools like PROMELA, PlusCal, and CSP is their focus as design
or algorithm languages, not traditional programming languages. When considering how to
implement user-defined functions in Althread, these tools, alongside concurrent languages like
Erlang and Go, offer interesting insights. Their approaches to function-like constructs motivate
Althread’s programmatic approach [2].

PROMELA, used by SPIN, foregoes traditional functions for inline constructs, macro-like
abbreviations that define local parameter variables without isolating them in a new scope [23].
These offer efficiency, maintaining accurate line-number referencing over standard macros,
as SPIN’s documentation highlights [24]. A Fibonacci inline (Figure 2.2) demonstrates its ap-
proachable syntax. Alternatively, a proctype can act as a server, handling requests via global
channels with user-provided local channels, though this adds overhead. Using process tem-
plates as functions is less viable due to significant costs [24]. SPIN’s documentation clarifies:
“The language targets verification of process interaction, not computational structures” [13].

PlusCal, paired with TLA+, employs procedures resembling Pascal-like structures, not tra-
ditional functions [25]. Its Fibonacci procedure (Figure 2.3) requires labels for control flow
and a global variable for results, adding complexity. Looking at 2.2 it’s easily noticeable that
PROMELA looks somewhat accessible, whereas PlusCal’s procedure syntax requires a lot of
extra steps, like labeling for any control flow/ blocks and a separate global variable to return
the result.

1 inline fibonacci(n, result)
2 {
3 int i, a, b, temp;
4

5 a = 0; b = 1; i = 2;
6

7 if
8 :: (n == 0) ->
9 result = 0

10 :: (n == 1) ->
11 result = 1
12 :: else ->
13 do
14 :: (i <= n) ->
15 temp = a + b;
16 a = b;
17 b = temp;
18 i++;
19 :: else -> break;
20 od;
21

22 result = b;
23 fi;
24 }

Figure 2.2: PROMELA Fibonacci in-
line macro

1 variables globalResult = 0;
2 procedure Fibonacci(n)
3 variable a = 0; b = 1; i = 1;

result = 0;
4 begin
5 FibStart:
6 if n = 0 then
7 result := 0;
8 goto FibDone;
9 else

10 FibWhile:
11 while i < n do
12 result := a + b;
13 a := b;
14 b := result;
15 i := i + 1;
16 end while;
17 if n = 1 then
18 result := 1;
19 end if;
20 end if;
21 FibDone:
22 globalResult := result;
23 return;
24 end procedure;

Figure 2.3: PlusCal Fibonacci algorithm

Finally, Erlang, a cornerstone of practical distributed systems, employs functional-style pro-
gramming within its asynchronous concurrency model [26, 27]. Functions, defined with pat-
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tern matching and guards, provide a concise syntax for process behaviors. For example, a
Fibonacci function in Erlang (Figure 2.4) leverages pattern matching for clarity and expres-
sivity, contrasting with PROMELA’s macro-like approach and PlusCal’s labeled procedures.
However, students must adapt to Erlang’s functional paradigms, which can present a learning
curve for beginners in educational settings.

1 fib(N) when N >= 0 ->
2 fib_iter(N, 0, 1).
3 fib_iter(0, A, _) -> A; % Base case: return F(0) or final result.
4 fib_iter(1, _, B) -> B; % Base case: return F(1).
5 fib_iter(N, A, B) ->
6 % Compute next Fibonacci: F(n) = F(n-1) + F(n-2).
7 fib_iter(N - 1, B, A + B).

Figure 2.4: Fibonacci function and pattern-matching in Erlang

2.6 Existing Function Implementation in Althread

Althread provides a built-in print function and methods on lists for adding, removing,
and accessing elements, which are essential for basic operations and debugging. The print
function leverages Rust’s print! built-in, enabling clear and concise debugging output. Al-
though Althread currently lacks an assert function, its documentation already describes its
potential use [28].

These features are integral to Althread’s functionality, providing essential tools for debug-
ging and data manipulation. They ensure that Althread remains a robust and practical system
for modeling distributed systems.

This defines the state of the art, paving the way for implementation details.
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Chapter 3

User-Defined Functions in Althread

My development of user-defined functions for Althread was informed by a compilers course
taken last semester, which established a theoretical foundation in compiler design. To gain
practical insights into function implementation, I followed my advisor’s recommendation to
study Crafting Interpreters by Robert Nystrom [29]. This resource provided a structured, step-
by-step approach to function implementation, enabling me to tackle the task incrementally.
As Althread previously lacked functions, their addition required careful consideration of the
language’s educational and technical objectives.

This chapter will cover design considerations, implementation details, and challenges, along
with examples demonstrating the functionality and impact of user-defined functions in Al-
thread.

3.1 Key Design Questions

Before exploring the implementation details, we must address key design questions that
shaped the development of user-defined functions in Althread. Given that PROMELA is the
current language used in the University of Strasbourg’s Distributed Algorithms course, it serves
as the primary benchmark, naturally driving efforts to surpass its capabilities. However, this
was not the sole factor, as the design was also informed by approaches to user-defined func-
tions in other languages referenced in the State of the Art (Chapter 2).

3.1.1 The Need for User-Defined Functions in Althread

Both PROMELA and Althread are designed for modeling and verifying distributed sys-
tems. However, their design priorities differ based on their intended use. While PROMELA
uses inline constructs for code reuse, Althread aims to implement fully-fledged user-defined
functions to support its educational goals.

PROMELA’s inline mechanism achieves code reuse through textual substitution. Unlike
in C or C++, where inlines are used for optimization [30] and may or may not be substituted
based on compiler decisions, PROMELA’s inlines always take place and are substituted directly
into the code [31, 32]. This approach works for PROMELA’s verification-focused goals but has
several limitations that would impact Althread’s educational effectiveness. Specifically, inline
constructs do not support recursion, lack local scoping (variables share the same context as
the calling code), and have limited flexibility in returning computed values. These limitations
make it difficult to express complex algorithms and can lead to potential conflicts and reduced
clarity.

Althread’s focus on education requires features that make distributed systems more acces-
sible to students. User-defined functions would provide several benefits. They allow for better
code organization through encapsulation, providing clear scope boundaries for variables. This
reduces the risk of conflicts and improves code clarity. Additionally, user-defined functions
support both iterative and recursive implementations, enabling the natural expression of algo-
rithms commonly used in distributed systems. These benefits make user-defined functions a
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valuable addition to Althread, enhancing its role as both an educational tool and a practical
system for modeling distributed systems.

3.1.2 Syntax and Semantics of User-Defined Functions

One of the key design questions is how to integrate user-defined functions into Althread’s
syntax and semantics. Several considerations were addressed, each with its own solution and
rationale; however, the final chosen design is presented below.

Function Declaration and Definition

To maintain consistency with Althread’s existing syntax and to ensure ease of learning,
the syntax for function declaration and definition was designed to be intuitive and familiar to
users. The following syntax was adopted:

1 // Syntax for a function with a return value
2 fn <function_name>
3 (<param1>: <type1>, <param2>: <type2>) -> <return_type> {
4 <statements>;
5 return <expression>;
6 }
7

8 // Syntax for a function with no return value (void)
9 fn <function_name>(<param1>: <type1>, <param2>: <type2>) -> void {

10 <statements>;
11 // Optional: return;
12 }

Figure 3.1: This syntax includes the function name, a list of parameters with their types,
the return type, and the function body enclosed in curly braces. This structure is similar
to function declarations in languages like C and Rust, making it easier for students to un-
derstand and use. The -> <return_type> construct is particularly appealing because
it aligns well with mathematical notation, clearly indicating that given a specific input,
the function will produce a corresponding output.

This notation enhances readability and reinforces the conceptual understanding of func-
tions as mappings from inputs to outputs. Key rules for function declaration and definition
include:

• A function must be declared starting with the keyword fn followed by a function name,
a list of arguments with (identifier: datatype, ...) or empty if no arguments,
and a return type.

• The return type of a function shall be void or an existing datatype. For simplicity, a func-
tion can’t have multiple return types (e.g. -> int | float | bool is not allowed).

• The return value’s datatype should be the same as the function’s declared return datatype.

• If the return datatype is void, then a return_statement is not required, but can be
used as return; to exit the function early.
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• A function must have a return value for all code paths.

Example:

1 fn sum(a: int, b: int) -> int {
2 return a + b;
3 }
4

5 fn print_sum(a: int, b: int) -> void {
6 print("Sum: " + (a + b));
7 }

Figure 3.2: The first function takes in a list of parameters of datatype int and returns an
int, the result of the sum of the two passed parameters. The second function’s return
type is void and it prints the sum of the two passed parameters to the screen.

Function Calls and Execution

Function calls in Althread should follow a straightforward syntax:

result = function_name(arg1, arg2);

Arguments are passed by value, and the return value is assigned to a variable. The parser
has to be extended to recognize function calls and generate the appropriate intermediate code.
During execution, the virtual machine (VM) should handle the function call by pushing the
current state onto the stack, executing the function, and then restoring the state. Return values
are managed by storing them in a temporary variable and then assigning them to the caller’s
variable. Key rules for function calls and execution include:

• Function arguments are passed by value; that is, copies of the original values are provided
to the function.

• Recursive calls are allowed inside functions.

• Multiple definitions of the same function name are not allowed.

• An indefinite amount of return_statement is allowed. Only the first one is going to
be evaluated (similar to Python, C, C++).

• Calling a non-existent function_name throws an error.

• A function can only be called inside a valid program.

Error Handling and Debugging

Error handling for functions in Althread should provide clear and informative error mes-
sages. When an error occurs within a function, whether it is a syntax error, a compilation-time
error, or a runtime error, the system must generate an error message that includes the line
number, the line contents, and a description of the error. This detailed information should help
users quickly identify and fix issues in their code.
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Example:

1 fn example_function(a: int, b: int) -> int {
2 if (a == 0) {
3 return b;
4 }
5 return 2.5; // This line will cause an error due to type mismatch
6 }

Figure 3.3: In this example, the function example_function attempts to return a
float value (2.5) when the return type is declared as int. The error handling mech-
anism in Althread should generate an error message indicating the line number where
the error occurred, the contents of that line, and a description of the error (e.g., "Type
mismatch: cannot return float when int is expected").

3.1.3 Integration with Existing Language Features

Another important design question is how to integrate user-defined functions with Al-
thread’s existing language features.

Compatibility with Concurrency

With Althread’s focus on modeling and verifying distributed systems, it is essential to con-
sider how user-defined functions should interact with its concurrency model. Functions are
often categorized as pure or impure. A pure function produces the same output for the same
inputs and has no side effects. An impure function may have side effects, such as modifying
shared state (e.g., variables in the shared block) or interacting with the environment through
operations like channel communication. While pure functions are typically easier to reason
about and verify, impure functions are necessary to model distributed systems, where side
effects enable communication and synchronization.

In Althread’s concurrency model, instructions within functions should behave like those
in a program’s body, meaning they can interleave with instructions from other simulated pro-
cesses. This interleaving occurs because Althread uses a single-threaded scheduler that ran-
domly selects the next instruction from any running process. Functions are not atomic by de-
fault, though atomic blocks can ensure atomicity if needed. Impure functions, particularly
those involving channel communication or shared state, are more affected by interleaving, as
their side effects introduce non-determinism, whereas pure functions remain predictable re-
gardless of interleaved execution.

For example, consider this pure function:

1 fn sum(a: int, b: int) -> int {
2 return a + b;
3 }

Figure 3.4: This pure function always returns the sum of its inputs with no side effects.
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In contrast, an impure function might involve concurrent operations:

1 fn increment_and_get() -> int {
2 Counter = Counter + 1; // Counter is a global variable
3 return Counter;
4 }

Figure 3.5: This impure function introduces non-determinism by modifying a global vari-
able, which can cause race conditions due to instruction interleaving.

To maintain clarity and predictability, programmers should consider the trade-offs between
pure and impure functions when designing their code in Althread. Pure functions are easier
to verify and debug due to their lack of side effects, but impure functions are essential for
modeling concurrent behaviors like message passing. Althread does not enforce restrictions on
function behavior, allowing both pure and impure functions to coexist.

In conclusion, the integration of user-defined functions into Althread’s concurrency model
requires careful consideration of their pure or impure nature. By allowing both types of func-
tions, Althread preserves flexibility for modeling distributed systems while relying on pro-
grammers to implement functions in a way that ensures predictable and debuggable behavior.
This approach enhances Althread’s role as both an educational tool and a practical system for
modeling distributed systems.

Built-in Functions and Methods

As seen in 2.6, Althread provides a set of built-in functions and methods that are essential
for basic operations and debugging. It is crucial to understand how these built-in functions and
methods are implemented and to introduce the necessary modifications to integrate seamlessly
with user-defined functions.

The focus of this work is on integrating user-defined functions into Althread’s concurrency
model. Extending the methods available for user-defined data types is an interesting feature
but is beyond the scope of this project. While being able to add custom functions for a data
type would enhance the language’s flexibility, it introduces additional complexity and is not
the primary goal of this work.

This section has addressed the key design questions that guided the development of user-
defined functions in Althread. The following sections will delve into the implementation de-
tails, challenges, and examples that demonstrate the functionality and impact of these features.

3.2 Updating the Compiler

3.2.1 Grammar Changes

To support user-defined functions in Althread, several modifications were made to the
grammar. Specifically, the list of blocks was extended to include a function_block, and
a new rule was created for the function block to adhere to the chosen function syntax. Addi-
tionally, the statements list was completed with a return_statement. These changes were
implemented in the althread.pest file.

The updated grammar rules are as follows:
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1 blocks = { ... function_block }
2 function_block = { FN_KW ~ identifier ~ arg_list ~ RARROW ~ datatype

~ code_block }
3 return_statement = { RETURN_KW ~ expression? ~ ";" }

Figure 3.6: These changes leverage the existing rule for parameters (arg_list) and use
the same body of instructions (code_block) as used for program templates. This en-
sures consistency and intuitive syntax for defining and using functions within Althread.
For a complete reference, the full grammar is provided in the Appendix A.

3.2.2 Building the AST

To accommodate user-defined functions,
the Abstract Syntax Tree (AST) in Althread
needs to be extended. The pest.rs syntax
parser returns pairs of rules, and by adding a
new matching rule for a pair, it is possible to
build the necessary parts that identify a func-
tion block in the AST.

First, the existing Ast data structure is
extended with a new field representing the
function blocks. This field is implemented
as a hashmap that maps function names to
their corresponding parameter list node, return
datatype, and code block node. This structure
allows for efficient lookup and management of
function definitions.

When constructing the AST, we check
if a function definition already exists. If
it does, an error is returned: Function
<function_name> is already defined.
Otherwise, the function definition is added
to the AST, and the AST display function is
updated to verify successful construction.

For example, consider the max function
shown in Figure 3.7, which returns the max-
imum value between two integers. The cor-
responding AST, shown in Figure 3.8, demon-
strates how the function definition is accurately
represented. Each syntactic element is correctly
included in the AST, ensuring that the structure
is complete and accurate. The full updates to
the code are available in the appendix for your
reference (see Appendix B.2).

This AST extension accurately represents
user-defined functions, supporting subsequent
compilation steps and integration with Al-
thread.

1 fn max(a: int, b: int) ->
int {

2 if (a > b) {
3 return a;
4 } else {
5 return b;
6 }
7 }

Figure 3.7: A max function returning
the max value between two ints.

1 max -> int
2 \-- if_control
3 |-- condition
4 | \-- binary_expr
5 | |-- left
6 | | \-- ident: a
7 | |-- op: >
8 | \-- right
9 | \-- ident: b

10 |-- then
11 | |-- return
12 | | \-- value:
13 | | \-- ident: a
14 \-- else
15 |-- return
16 | \-- value:
17 | \-- ident: b

Figure 3.8: The built AST for the max
function.
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3.2.3 Compilation Pipeline

To compile user-defined functions, the existing compiler state needs to be extended. Specif-
ically, the CompilerState data structure is updated to include a boolean in_function,
which helps in defining local variables within a function body, and a hashmap to store func-
tion names and their corresponding definitions. A function definition is represented by the
data structure shown in Figure 3.9.

1 pub struct FunctionDefinition {
2 pub name: String,
3 pub arguments: Vec<(Identifier, DataType)>,
4 pub return_type: DataType,
5 pub body: Vec<Instruction>,
6 pub pos: Pos,
7 }

Figure 3.9: A function definition is the representation of a function stored in the com-
piler’s state/context. It contains the name of the function, a vector of parameters and
their corresponding datatypes, the function’s return type, the compiled body (a vector of
instructions), and the position of the first line of the function definition in the code text
for debugging and error reporting reasons.

Function Definition

One of the main challenges encountered while implementing function definitions was cor-
rectly managing the program stack and the stack depth, which initially proved difficult. How-
ever, with time and practice, this aspect became more manageable. The implementation of this
functionality takes place in the main compile function, located in ast/mod.rs (parts of the
code can be found in Appendix B). Initially, the shared block is compiled, followed by the ad-
dition of the user-defined functions compilation implementation just before the programs are
compiled. For each function block representing a function definition stored in the AST, the
in_function parameter in the compiler state is set to true, and the stack depth is updated
by 1 to properly represent a function call. Each argument is then pushed onto the program’s
stack.

Another challenge arose with the order of operations when compiling function definitions,
particularly in the context of recursion. A check is performed to determine if the function
already exists in the compiler’s state. If it does not, the body of the function is compiled,
and if no explicit return statement is found, a return instruction is added. After cleaning the
stack and reverting to the previous depth, the function definition is then finalized and stored.
Initially, this function definition was only created after the body was compiled. However, this
approach failed for recursive functions because the definition was not available during the
body’s compilation. To resolve this, a preliminary version of the function definition without
the compiled body is inserted into the compiler state before the body is compiled. This allows
recursive calls within the body to be correctly recognized, after which the compiled body is
added to complete the function definition.

Additionally, the compiler must be able to compile a return instruction. This also allows
for verification of whether a return statement is inside a function’s body or outside, based on
the compiler’s state previously set in_function field. If a return statement is found out-
side a function, an error is returned informing the user that a return statement cannot be out-
side a function. This is also where the return instruction is set up with an important field,
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has_value, which indicates whether this return is void or a value. The full implementation
of the return statement can be viewed in the Appendix C.1.

Currently, this implementation lacks a check to ensure that all code paths require a return
value. This would necessitate constructing a control flow graph and analyzing all possible
paths to verify that each path ends with a return statement.

Function Call

To support user-defined function calls, the existing function call statement in fn_call.rs
(parts of the code can be found in Appendix C.2) is modified. The compiler checks if the
function name exists in the compiler’s state. If it does not, an error is returned: undefined
function <function_name>. Otherwise, the compiler verifies that the argument count
matches the function signature and that the datatypes of the arguments are as expected. If
everything checks out, the compiler adds a function call instruction to the vector of instructions
and pushes a variable onto the stack for the return value of the function.

3.3 Extending the VM

After compilation, the entire code is passed as a data structure to the virtual machine (VM).
This data structure, referred to as CompiledProject, includes a copy of the user-defined
functions stored in the compiler state. The structure of CompiledProject is illustrated in
Figure 3.10.

1 Ok(CompiledProject {
2 global_memory,
3 user_functions: state.user_functions.clone(),
4 programs_code,
5 always_conditions,
6 stdlib: Rc::new(state.stdlib),
7 })

Figure 3.10: The CompiledProject data structure encapsulates the entire set of in-
structions compiled from the AST, including the function definitions with their compiled
bodies. It also contains the global memory, which stores shared, global variables, and
the always conditions, which are conditions that must always hold true and are used
for invariant checking. Additionally, it includes Althread’s standard library, which is
utilized by existing methods on lists and other data structures. The user-defined func-
tions are cloned from the compiler state, ensuring that the VM has access to all function
definitions necessary for execution.

The VM starts by executing instructions sequentially, beginning with the main block. Each
instruction is matched with its defined behavior in the next function in running_program.rs
(The full contents of this file are available in Appendix D).The function call instruction has been
extended to support user-defined function calls. The VM uses a simplified version of an acti-
vation record [33] represented by a call stack (named call_stack), a vector containing data
structures of type StackFrame as shown in Figure 3.11.

When a function call instruction is matched, the following sequence occurs:

1. The VM first retrieves and validates the function’s arguments from the stack as a tuple.
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2. A new StackFrame is created and pushed onto the call_stack, storing:

• The return instruction pointer (return_ip) pointing to the next instruction after
the call.

• The caller’s frame pointer (caller_fp) for maintaining proper stack boundaries.

• A reference to the caller’s code segment (caller_code) to restore the execution
context.

• The expected return type (expected_return_type) for type checking the func-
tion’s result.

3. The VM then sets up the new execution context by:

• Setting the frame pointer (frame_pointer) to mark the current stack boundary.

• Pushing the function arguments onto the stack above the new frame pointer.

• Switching the current code segment to the function’s compiled body.

• Resetting the instruction pointer to 0.

1 struct StackFrame<’a> {
2 return_ip: usize, // the instruction to return to
3 caller_fp: usize, // the size of the stack
4 caller_code: &’a [Instruction],
5 expected_return_type: DataType
6 }

Figure 3.11: The StackFrame structure represents an activation record used to man-
age function calls. It includes the return instruction pointer (return_ip), the caller’s
frame pointer (the size of the stack before the function call, caller_fp), a ref-
erence to the caller’s code segment (caller_code), and the expected return type
(expected_return_type) for type checking the function’s result.

When the function executes a return instruction, the process is reversed:

1. The return value is popped from the stack and type-checked against the expected return
type. If there’s a type mismatch, then the VM signals the error to the user and stops
execution.

2. The stack is unwound to the caller’s frame pointer.

3. The execution context is restored using the saved StackFrame.

4. The return value is pushed onto the caller’s stack.

3.4 Testing

To validate the implementation of user-defined functions in Althread, I conducted a series
of tests. These tests focused on ensuring that the compiler and VM correctly handle function
definitions, calls, and returns, particularly in scenarios involving recursion, iteration, concur-
rency, and shared variable access.
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3.4.1 Recursive and Loop-Based Functions

I chose the Fibonacci sequence as a test case because it effectively demonstrates the handling
of recursion, iteration, and local variable definitions. Two versions of the Fibonacci function
were implemented: a recursive version and an iterative version. These implementations ensure
that the VM can correctly manage stack frames for recursive calls and efficiently handle loops
and local variables.

The recursive Fibonacci function computes the Fibonacci number for a given input by call-
ing itself with a decremented argument until the base case is reached. The iterative Fibonacci
function uses a loop to compute the Fibonacci number, demonstrating the handling of iterative
constructs and local variable definitions. The full code for both implementations can be viewed
in Appendix E.1.

The main program calls both the recursive and iterative Fibonacci functions and prints the
results. The expected output is:

Fibonacci recursive of 10: 55
Fibonacci iterative of 10: 55

This output confirms that both the recursive and iterative implementations of the Fibonacci
sequence work correctly in Althread. The VM successfully handled the recursive calls, demon-
strating the effectiveness of the call stack and frame mechanism. Additionally, the iterative
implementation confirmed that the VM can efficiently handle loops and local variable defini-
tions.

3.4.2 Concurrent Message Processing

Another key test involved implementing a concurrent message processing scenario to demon-
strate the use of atomic blocks, conditional statements, and access to shared variables. In this
test, two worker processes are spawned, each waiting to receive a message. Upon receiving a
message, each worker updates shared variables within an atomic block to ensure that updates
are performed without interference from other processes. The full code for this implementation
can be viewed in Appendix E.2.

The expected output is:

Processing message: value=125, flag=true
Processing message: value=125, flag=false
Channel test successful!

or

Processing message: value=125, flag=false
Processing message: value=125, flag=true
Channel test successful!

This output confirms that the concurrent message processing scenario works correctly in Al-
thread, demonstrating the effective handling of atomic blocks, conditional statements, and
shared variable access.
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Chapter 4

Conclusion

This research focused on extending Althread, an educational programming language for
distributed systems developed at the University of Strasbourg, by implementing user-defined
functions. The primary goal was to enhance the language’s capabilities through improved
modularity and code reusability, making it more accessible and practical for students learning
distributed systems programming.

4.1 Summary of Contributions

The project successfully integrated user-defined functions into Althread’s existing archi-
tecture, marking a significant enhancement to the language’s functionality. The implemen-
tation required comprehensive modifications to both the compiler and virtual machine (VM)
to support function definitions, calls, and returns. Notable features include support for re-
cursive functions, iterative constructs, and concurrent execution capabilities. To maintain the
language’s educational value, the error reporting system was expanded to provide clear, con-
textual feedback for function-related issues during syntax checking, compilation, and execu-
tion phases. The implementation was validated through various test cases, including recursive
and iterative Fibonacci implementations and concurrent message-processing scenarios. While
these tests demonstrated the reliability of core functionalities, further testing of complex pat-
terns and edge cases remains necessary.

4.2 Future Perspectives

The implementation of user-defined functions opens several promising avenues for future
development. A priority enhancement would be the implementation of control flow graph
analysis to ensure complete return value coverage across all code paths. This would strengthen
the language’s reliability and help prevent runtime errors.

The current implementation could be further enhanced by adding support for function
modularity across files. This would require modifying Althread’s grammar and extending the
compiler to read and compile external functions into its state. Additionally, an interesting idea
would be incorporating advanced programming features such as lambda functions and pattern
matching, similar to Erlang’s implementation. However, these additions would require careful
evaluation of their compatibility with Althread’s current grammar and pedagogical objectives.

An existing error in Althread’s grammar regarding the parsing of comparison expressions
(such as v >= 1) needs attention. While workarounds exist, such as using equivalent expres-
sions like v > 1 || v == 1 or v > 0.99, a proper solution would involve restructuring
the grammar’s expression handling system and the AST building process.

These proposed enhancements would strengthen Althread’s position as both an educa-
tional tool and a practical platform for distributed systems modeling, while maintaining its
accessibility for students and encouraging community involvement in its continued develop-
ment.
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Appendix A

Updated Grammar

The full grammar for Althread, including the modifications for user-defined functions, is
provided below. This grammar is implemented in the althread.pest file.

1 /// filepath: althread.pest
2

3 /// # Althread Grammar
4 /// This file defines the grammar for the Althread programming

language,
5

6 program = _{ SOI ~ blocks* ~ EOI }
7

8 /// ## Program Structure
9 /// The main building blocks of an Althread program are:

10 /// - **Main Block**: The entry point of the program.
11 /// - **Shared Block**: Declares global variables accessible across

different parts of the program.
12 /// - **Condition Block**: Monitors conditions at each atomic step (e

.g., always, never, eventually).
13 /// - **Program Block**: Encapsulates code that runs concurrently in

parallel processes.
14 /// - **Function Block**: User-defined functions
15 blocks = _{ main_block | global_block | condition_block |

program_block | function_block }
16

17 global_block = { GLOBAL_KW ~ code_block }
18 condition_block = { condition_keywords ~ expression_block }
19 program_block = { PROGRAM_KW ~ identifier ~ arg_list ~ code_block }
20 main_block = { MAIN_KW ~ code_block }
21 // Functions
22 function_block = { FN_KW ~ identifier ~ arg_list ~ RARROW ~ datatype

~ code_block }
23

24 code_block = { "{" ~ statement* ~ "}" }
25 expression_block = { "{" ~ expression_statement* ~ "}" }
26 expression_statement = { expression ~ ";" }
27

28 condition_keywords = _{ ALWAYS_KW | NEVER_KW }
29

30 /// ## Statements
31 /// Statements are the executable instructions in the language.
32 /// They include assignments, declarations, expressions, print

statements,
33 /// function calls, and control flow structures.
34

35 statement = {
36 assignment_statement
37 | declaration_statement
38 | channel_declaration_statement
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39 | run_statement
40 | send_statement
41 | wait_statement
42 | atomic_statement
43 | if_control
44 | for_control
45 | loop_control
46 | while_control
47 | call_statement
48 | code_block
49 | break_loop_statement
50 | return_statement
51 }
52

53

54 break_loop_statement = { (BREAK_KW | CONTINUE_KW) ~ identifier? ~ ";"
}

55 assignment_statement = _{ assignment ~ ";" }
56 declaration_statement = _{ declaration ~ ";" }
57 wait_statement = { WAIT_KW ~ (
58 waiting_block
59 | waiting_block_case) }
60 atomic_statement = { (ATOMIC_KW | "!") ~ statement }
61 call_statement = _{ fn_call ~ ";" }
62 run_statement = _{ run_call ~ ";" }
63 send_statement = _{ send_call ~ ";" }
64 channel_declaration_statement = _{ channel_declaration ~ ";" }
65 // Functions
66 return_statement = { RETURN_KW ~ expression? ~ ";" }
67

68 fn_call = { object_identifier ~ tuple_expression }
69 run_call = { RUN_KW ~ identifier ~ tuple_expression }
70 send_call = { SEND_KW ~ object_identifier ~ tuple_expression }
71 channel_declaration = {
72 CHANNEL_KW ~
73 object_identifier ~
74 "<"? ~
75 type_list ~
76 ">"? ~
77 object_identifier }
78

79 type_list = { "(" ~ datatype ~ ("," ~ datatype)* ~ ")" }
80 pattern_list = { "(" ~ pattern ~ ("," ~ pattern)* ~ ")" }
81 arg_list = {
82 ( "(" ~ ")")
83 | ("(" ~ (identifier ~ ":" ~ datatype) ~ ("," ~ identifier ~ ":" ~

datatype)* ~ ")" )
84 }
85 pattern = { identifier | literal }
86

87 /// ### Assignments
88 /// Assignments assign values to variables.
89 /// - **Unary Assignments**: Increment or decrement a variable (e.g.,

a++).
90 /// - **Binary Assignments**: Assign the result of an expression to a

variable (e.g., a = b + c).
91 assignment = { binary_assignment }
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92

93 side_effect_expression = { run_call | fn_call | expression | ("["
~ range_expression ~ "]") }

94

95 binary_assignment = {
96 identifier ~
97 binary_assignment_operator ~
98 side_effect_expression }
99 binary_assignment_operator = { ASSIGN_OP | ADD_ASSIGN_OP |

SUB_ASSIGN_OP | MUL_ASSIGN_OP | DIV_ASSIGN_OP | MOD_ASSIGN_OP }
100

101 /// ### Declarations
102 /// Declarations introduce new variables, which can be mutable (let)

or immutable (const).
103 declaration = { declaration_keyword ~ identifier ~ (":" ~

datatype)? ~ ("=" ~ side_effect_expression)? }
104 declaration_keyword = { LET_KW | CONST_KW }
105

106 receive_expression = { RECEIVE_KW ~ object_identifier? ~ pattern_list
~ ("=>" ~ statement)? }

107

108 /// ### Expressions
109 /// Expressions evaluate values based on arithmetic and logical

operations, following standard precedence rules.
110 expression = {
111 fn_call
112 | binary_expression
113 | unary_expression
114 | primary_expression
115 }
116

117 tuple_expression = {
118 ("(" ~ ")") | ("(" ~ expression ~ ("," ~ expression)* ~ ")")
119 }
120 range_expression = {
121 (expression ~ LIST_OP ~ expression)
122 }
123

124 primary_expression = _{ literal | identifier | "(" ~ expression ~ ")"
}

125

126 unary_expression = _{ unary_operator? ~ primary_expression }
127 unary_operator = { POS_OP | NEG_OP | NOT_OP }
128

129 binary_expression = _{ unary_expression ~ (binary_operator ~
unary_expression)* }

130 binary_operator = _{ or_operator | and_operator |
equality_operator | comparison_operator | term_operator |
factor_operator }

131 or_operator = { OR_OP }
132 and_operator = { AND_OP }
133 equality_operator = { EQ_OP | NE_OP }
134 comparison_operator = { LT_OP | GT_OP | LE_OP | GE_OP }
135 term_operator = { ADD_OP | SUB_OP }
136 factor_operator = { MUL_OP | DIV_OP | MOD_OP }
137

138 waiting_block = {
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139 (SEQ_KW | FIRST_KW) ~ "{" ~ waiting_block_case* ~ "}"
140 }
141 waiting_block_case = {
142 (receive_expression | expression)
143 ~ (";" | ("=>" ~ statement)) }
144

145 /// ### Control Flow
146 /// Control flow structures include conditional execution and loops.
147

148 if_control = { IF_KW ~ expression ~ code_block ~ (ELSE_KW ~ (
if_control | code_block))? }

149 while_control = { WHILE_KW ~ expression ~ code_block }
150 loop_control = { LOOP_KW ~ statement }
151 for_control = { FOR_KW ~ identifier ~ "in" ~ list_expression ~

statement }
152

153 list_expression = _{ (range_expression | expression) }
154 /// ## Tokens
155 /// This section defines the keywords, operators, datatypes, and

other tokens used in Althread.
156

157 /// ### Keywords
158 /// Keywords define the core constructs of the language.
159 KEYWORDS = _{
160 MAIN_KW
161 | GLOBAL_KW
162 | PROGRAM_KW
163 | ALWAYS_KW
164 | NEVER_KW
165 | RUN_KW
166 | LET_KW
167 | CONST_KW
168 | IF_KW
169 | ELSE_KW
170 | WHILE_KW
171 | FN_KW
172 | RETURN_KW
173 | BOOL
174 | INT_TYPE
175 | FLOAT_TYPE
176 | STR_TYPE
177 | VOID_TYPE
178 }
179

180 MAIN_KW = _{ "main" }
181 GLOBAL_KW = _{ "shared" }
182 PROGRAM_KW = _{ "program" }
183 WAIT_KW = _{ "wait" }
184 ALWAYS_KW = { "always" }
185 NEVER_KW = { "never" }
186 RUN_KW = _{ "run" }
187

188 FIRST_KW = { "first" }
189 SEQ_KW = { "seq" }
190

191 LET_KW = { "let" }
192 CONST_KW = { "const" }
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193

194 IF_KW = _{ "if" }
195 ELSE_KW = _{ "else" }
196 WHILE_KW = _{ "while" }
197 FOR_KW = _{ "for" }
198 LOOP_KW = _{ "loop" }
199 BREAK_KW = { "break" }
200 CONTINUE_KW = { "continue" }
201

202 SEND_KW = _{ "send" }
203 RECEIVE_KW = _{ "receive" }
204 CHANNEL_KW = _{ "channel" }
205

206 TRUE_KW = _{ "true" }
207 FALSE_KW = _{ "false" }
208 NULL_KW = _{ "null" }
209

210 ATOMIC_KW = _{ "atomic" }
211

212 // Functions
213 FN_KW = _{ "fn" }
214 RETURN_KW = _{ "return" }
215 RARROW = { "->" }
216

217 /// ### Operators
218 /// Operators are used for arithmetic, logical operations, and

assignments.
219 POS_OP = { "+" }
220 NEG_OP = { "-" }
221 NOT_OP = { "!" }
222

223 ADD_OP = { "+" }
224 SUB_OP = { "-" }
225 MUL_OP = { "*" }
226 DIV_OP = { "/" }
227 MOD_OP = { "%" }
228

229 EQ_OP = { "==" }
230 NE_OP = { "!=" }
231 LT_OP = { "<" }
232 GT_OP = { ">" }
233 LE_OP = { "<=" }
234 GE_OP = { ">=" }
235 AND_OP = { "&&" }
236 OR_OP = { "||" }
237

238 LIST_OP = _{ ".." }
239

240 ASSIGN_OP = { "=" }
241 ADD_ASSIGN_OP = { "+=" }
242 SUB_ASSIGN_OP = { "-=" }
243 MUL_ASSIGN_OP = { "*=" }
244 DIV_ASSIGN_OP = { "/=" }
245 MOD_ASSIGN_OP = { "%=" }
246 OR_ASSIGN_OP = { "|=" }
247

248 /// ### Datatypes
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249 /// Datatypes supported in Althread include boolean, integer, float,
string, and void.

250 datatype = { BOOL_TYPE | INT_TYPE | FLOAT_TYPE | STR_TYPE |
VOID_TYPE | LIST_TYPE | PROCESS_TYPE }

251 BOOL_TYPE = { "bool" }
252 INT_TYPE = { "int" }
253 FLOAT_TYPE = { "float" }
254 STR_TYPE = { "string" }
255 VOID_TYPE = { "void" }
256 PROCESS_TYPE = { "proc" ~ "(" ~ identifier ~ ")" }
257 LIST_TYPE = { "list" ~ "(" ~ datatype ~ ")" }
258

259 /// ### Literals
260 /// Include literals such as booleans, integers, floats, strings, and

null.
261 literal = { BOOL | FLOAT | INT | STR | NULL }
262 BOOL = @{ TRUE_KW | FALSE_KW }
263 INT = @{ ASCII_DIGIT+ }
264 FLOAT = @{ ASCII_DIGIT+ ~ "." ~ ASCII_DIGIT+ }
265 STR = @{ "\"" ~ (!"\"" ~ ANY)* ~ "\"" }
266 NULL = @{ NULL_KW }
267

268 /// ### Identifiers
269 /// Identifiers are used for naming variables, functions, and other

constructs.
270 identifier = { IDENT }
271 object_identifier = { (IDENT ~ "." ~ object_identifier) | IDENT }
272

273 reserved_keywords = { (KEYWORDS | datatype) ~ !IDENT_CHAR }
274

275 IDENT = @{ !reserved_keywords ~ ASCII_ALPHA ~ IDENT_CHAR* }
276 IDENT_CHAR = _{ ASCII_ALPHANUMERIC | "_" }
277

278 /// ## Whitespace and Comments
279 /// Whitespace and comments are ignored by the parser.
280 WHITESPACE = _{ " " | "\t" | NEWLINE }
281 NEWLINE = _{ "\n" | "\r" | "\r\n" }
282

283 COMMENT = _{ INLINE_COMMENT | BLOCK_COMMENT }
284 INLINE_COMMENT = _{ "//" ~ (!NEWLINE ~ ANY)* }
285 BLOCK_COMMENT = _{ "/*" ~ (!"*/" ~ ANY)* ~ "*/" }

Figure A.1: Althread’s full grammar updated to support user-defined functions
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Appendix B

Updated AST Code
The full AST for the code in Figure 2.1:

1 shared
2 |-- decl
3 | |-- keyword: let
4 | |-- ident: A
5 | \-- value
6 | \-- int: 1
7 |-- decl
8 | |-- keyword: let
9 | |-- ident: B

10 | \-- value
11 | \-- int: 0
12 \-- decl
13 |-- keyword: let
14 |-- ident: Start
15 \-- value
16 \-- bool: false
17

18 main
19 |-- decl
20 | |-- keyword: let
21 | |-- ident: pa
22 | \-- value
23 | \-- run: A
24 |-- decl
25 | |-- keyword: let
26 | |-- ident: pb
27 | \-- value
28 | \-- run: A
29 |-- channel decl
30 |-- channel decl
31 |-- binary_assign
32 | |-- ident: Start
33 | |-- op: =
34 | \-- value:
35 | \-- bool: true
36 |-- send
37 | |-- out
38 | \-- tuple
39 | \-- int: 125
40 | \-- bool: true
41 \-- send
42 |-- out2
43 \-- tuple
44 \-- int: 125
45 \-- bool: false
46

47 A
48 |-- wait_control
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49 | \-- wait case
50 | |-- ident: Start
51 \-- wait_control
52 \-- wait case
53 |-- receive
54 | |-- channel ’in’
55 | |-- patterns (x,y)
56 | |-- print
57 | | \-- tuple
58 | | \-- string: "received "
59 | | \-- ident: x
60 | | \-- string: " "
61 | | \-- ident: y

Figure B.1: The AST structure can be viewed through a AST display implementation for
all the nodes of the AST.

The full AST for Althread, including the modifications for user-defined functions, is provided
below. This build process is implemented in the ast/mod.rs file.

1 // filepath: ast/mod.rs
2

3 pub struct Ast {
4 pub process_blocks: HashMap<String, (Node<ArgsList>, Node<Block>)

>,
5 pub condition_blocks: HashMap<ConditionKeyword, Node<

ConditionBlock>>,
6 pub global_block: Option<Node<Block>>,
7 pub function_blocks: HashMap<String, (Node<ArgsList>, DataType,

Node<Block>)>,
8 }
9

10 impl Ast {
11 pub fn new() -> Self {
12 Self {
13 process_blocks: HashMap::new(),
14 condition_blocks: HashMap::new(),
15 global_block: None,
16 function_blocks: HashMap::new(),
17 }
18 }
19

20 pub fn build(pairs: Pairs<Rule>) -> AlthreadResult<Self> {
21 let mut ast = Self::new();
22 for pair in pairs {
23 match pair.as_rule() {
24 // Other blocks are removed for brevity
25 Rule::function_block => {
26 let mut pairs = pair.into_inner();
27

28 let function_identifier = pairs.next().unwrap().
as_str().to_string();

29 let args_list: Node<token::args_list::ArgsList> =
Node::build(pairs.next().unwrap())?;

30 pairs.next(); // skip the "->" token
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31 let return_datatype = DataType::from_str(pairs.
next().unwrap().as_str());

32 let function_block: Node<Block> = Node::build(
pairs.next().unwrap())?;

33

34 // Check if the function is already defined
35 if ast.function_blocks.contains_key(&

function_identifier) {
36 return Err(AlthreadError::new(
37 ErrorType::FunctionAlreadyDefined,
38 Some(function_block.pos),
39 format!("Function ’{}’ is already defined

", function_identifier),
40 ));
41 }
42

43 ast.function_blocks.insert(
44 function_identifier,
45 (args_list, return_datatype, function_block),
46 );
47 }
48 _ => (), // Handle other rules as needed
49 }
50 }
51 Ok(ast)
52 }
53 }
54

55 impl AstDisplay for Ast {
56 fn ast_fmt(&self, f: &mut Formatter, prefix: &Prefix) -> fmt::

Result {
57 // other blocks are removed for brevity
58 for (function_name, (_args, return_type, function_node)) in &

self.function_blocks {
59 writeln!(f, "{}{} -> {}", prefix, function_name,

return_type)?;
60 function_node.ast_fmt(f, &prefix.add_branch())?;
61 writeln!(f, "")?;
62 }
63 Ok(())
64 }
65 }

Figure B.2: Althread’s full grammar updated to support user-defined functions
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Appendix C

Return and Function Call
The full implementation of the return statement is provided in the file
ast/statement/fn_return.rs which can be viewed in Figure C.1. This code han-
dles the compilation and execution of return statements within user-defined functions.

1 // filepath: ast/statement/fn_return.rs
2

3 #[derive(Debug, Clone)]
4 pub struct FnReturn {
5 pub value: Option<Node<Expression>>,
6 pub pos: Pos,
7 }
8

9 impl NodeBuilder for FnReturn {
10 fn build(mut pairs: Pairs<Rule>) -> AlthreadResult<Self> {
11 // return statement doesn’t necessarily have a value
12 let value = if let Some(pair) = pairs.next() {
13 Some(Expression::build_top_level(pair)?)
14 } else {
15 None
16 };
17

18 // the caller takes care of setting the proper position
19 Ok(Self { value, pos: Pos::default() })
20 }
21 }
22

23 impl InstructionBuilder for FnReturn {
24 fn compile(&self, state: &mut CompilerState) -> AlthreadResult<

InstructionBuilderOk> {
25 if !state.in_function {
26 return Err(AlthreadError::new(
27 ErrorType::ReturnOutsideFunction,
28 Some(self.pos),
29 "Return statement outside function".to_string(),
30 ));
31 }
32

33 let mut builder = InstructionBuilderOk::new();
34 let mut has_value: bool = false;
35

36 if let Some(ref value_node) = self.value {
37 builder.extend(value_node.compile(state)?);
38 has_value = true;
39 }
40

41 let ret_instr = Instruction {
42 control: InstructionType::Return {
43 has_value
44 },
45 pos: Some(self.pos),
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46 };
47

48

49 builder.return_indexes.push(builder.instructions.len());
50

51 builder.instructions.push(ret_instr);
52

53 Ok(builder)
54 }
55 }
56

57 impl AstDisplay for FnReturn {
58 fn ast_fmt(&self, f: &mut fmt::Formatter, prefix: &Prefix) -> fmt

::Result {
59 writeln!(f, "{prefix}return")?;
60 let prefix = prefix.add_branch();
61

62 if let Some(ref value_node) = self.value {
63 let prefix_val = prefix.switch();
64 writeln!(f, "{}value:", &prefix_val)?;
65 value_node.ast_fmt(f, &prefix_val.add_leaf())?;
66 } else {
67 writeln!(f, "{}(no value)", prefix.switch())?;
68 }
69

70 Ok(())
71 }
72 }

Figure C.1: Althread’s new return statement implementation

The full implementation of the extended function call statement is provided in the file
ast/statement/fn_call.rs which can be viewed in Figure C.2. This code handles the
compilation and execution of function calls, including support for user-defined functions.

1 // filepath: ast/statement/fn_call.rs
2

3 #[derive(Debug, Clone, PartialEq)]
4 pub struct FnCall {
5 pub fn_name: Vec<Node<Identifier>>,
6 pub values: Box<Node<Expression>>,
7 }
8

9 impl FnCall {
10 pub fn add_dependencies(&self, dependencies: &mut WaitDependency)

{
11 for ident in &self.fn_name {
12 dependencies.variables.insert(ident.value.value.clone());
13 }
14

15 self.values.value.add_dependencies(dependencies);
16 }
17

18 pub fn get_vars(&self, vars: &mut HashSet<String>) {
19 for ident in &self.fn_name {

33



20 vars.insert(ident.value.value.clone());
21 }
22

23 self.values.value.get_vars(vars);
24 }
25 }
26

27 impl NodeBuilder for FnCall {
28 fn build(mut pairs: Pairs<Rule>) -> AlthreadResult<Self> {
29 let mut object_identifier = pairs.next().unwrap();
30

31 let mut fn_name = Vec::new();
32

33 loop {
34 let n: Node<Identifier> = Node::build(object_identifier.

clone())?;
35 fn_name.push(n);
36

37 let mut pairs = object_identifier.into_inner();
38 pairs.next().unwrap();
39 if let Some(p) = pairs.next() {
40 object_identifier = p;
41 } else {
42 break;
43 }
44 }
45

46 let values = Box::new(Expression::build_top_level(pairs.next
().unwrap())?);

47

48 Ok(Self { fn_name, values })
49 }
50 }
51

52 impl InstructionBuilder for Node<FnCall> {
53 fn compile(&self, state: &mut CompilerState) -> AlthreadResult<

InstructionBuilderOk> {
54

55 let mut builder = InstructionBuilderOk::new();
56 state.current_stack_depth += 1;
57

58 builder.extend(self.value.values.compile(state)?);
59

60 // normally it’s always a tuple so it’s always 1 argument
61 // Tuple([]) when nothing is passed as argument
62 let args_on_stack_var =
63 state.program_stack
64 .last()
65 .cloned()
66 .expect("Stack should not be empty");
67

68 // get the function’s basename (the last identifier in the
fn_name)

69 let basename = &self.value.fn_name[0].value.value;
70

71 if self.value.fn_name.len() == 1 {
72
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73 if let Some(func_def) = state.user_functions.get(basename
).cloned() {

74

75 let expected_args = &func_def.arguments;
76 let expected_arg_count = expected_args.len();
77

78 // get the list of arguments (datatypes) from the
tuple arg_list

79 let provided_arg_types = args_on_stack_var.datatype.
tuple_unwrap();

80

81 // check if the number of arguments is correct
82 if expected_arg_count != provided_arg_types.len() {
83

84 state.unstack_current_depth();
85

86 return Err(AlthreadError::new(
87 ErrorType::FunctionArgumentCountError,
88 Some(self.pos),
89 format!(
90 "Function ’{}’ expects {} arguments, but

{} were provided.",
91 basename,
92 expected_arg_count,
93 provided_arg_types.len()
94 ),
95 ));
96 }
97

98 // check if the types of the arguments are correct
99 for (i, ((_arg_name, expected_type), provided_type))

in expected_args.iter().zip(provided_arg_types.
iter()).enumerate() {

100 if expected_type != provided_type {
101

102 state.unstack_current_depth();
103

104 return Err(AlthreadError::new(
105 ErrorType::FunctionArgumentTypeMismatch,
106 Some(self.pos),
107 format!(
108 "Function ’{}’ expects argument {}

(’{}’) to be of type {}, but got
{}.",

109 basename,
110 i + 1,
111 expected_args[i].0.value, // argument

name
112 expected_type,
113 provided_type
114 ),
115 ));
116 }
117 }
118

119 let unstack_len = state.unstack_current_depth();
120
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121 builder.instructions.push(Instruction {
122 control: InstructionType::FnCall {
123 name: basename.to_string(),
124 unstack_len,
125 variable_idx: None,
126 arguments: None
127 },
128 pos: Some(self.pos),
129 });
130

131

132 state.program_stack.push(Variable {
133 mutable: true,
134 name: "".to_string(),
135 datatype: func_def.return_type.clone(),
136 depth: state.current_stack_depth,
137 declare_pos: Some(self.pos),
138 });
139

140 } else if basename == "print" {
141

142 let unstack_len = state.unstack_current_depth();
143

144 builder.instructions.push(Instruction {
145 control: InstructionType::FnCall {
146 name: basename.to_string(),
147 unstack_len,
148 variable_idx: None,
149 arguments: None,
150 },
151 pos: Some(self.pos),
152 });
153

154 state.program_stack.push(Variable {
155 mutable: true,
156 name: "".to_string(),
157 datatype: DataType::Void,
158 depth: state.current_stack_depth,
159 declare_pos: Some(self.pos),
160 });
161

162 } else {
163

164 return Err(AlthreadError::new(
165 ErrorType::UndefinedFunction,
166 Some(self.pos),
167 format!("undefined function {}", basename),
168 ));
169 }
170

171 } else {
172 // this is a method call
173

174 //get the type of the variable in the stack with this
name

175 let var_id = state
176 .program_stack
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177 .iter()
178 .rev()
179 .position(|var| var.name.eq(basename))
180 .ok_or(AlthreadError::new(
181 ErrorType::VariableError,
182 Some(self.pos),
183 format!("Variable ’{}’ not found", basename),
184 ))?;
185 let var = &state.program_stack[state.program_stack.len()

- var_id - 1];
186

187 let interfaces = state.stdlib.interfaces(&var.datatype);
188

189 // retreive the name of the function
190 let fn_name = self.value.fn_name.last().unwrap().value.

value.clone();
191

192 let fn_idx = interfaces.iter().position(|i| i.name ==
fn_name);

193 if fn_idx.is_none() {
194 return Err(AlthreadError::new(
195 ErrorType::UndefinedFunction,
196 Some(self.pos),
197 format!("undefined function {}", fn_name),
198 ));
199 }
200 let fn_idx = fn_idx.unwrap();
201 let fn_info = &interfaces[fn_idx];
202 let ret_type = fn_info.ret.clone();
203

204 let unstack_len = state.unstack_current_depth();
205

206 state.program_stack.push(Variable {
207 mutable: true,
208 name: "".to_string(),
209 datatype: ret_type,
210 depth: state.current_stack_depth,
211 declare_pos: None,
212 });
213

214 builder.instructions.push(Instruction {
215 control: InstructionType::FnCall {
216 name: fn_name,
217 unstack_len: unstack_len,
218 variable_idx: Some(var_id),
219 arguments: None, // use the top of the stack
220 },
221 pos: Some(self.pos),
222 });
223 }
224

225 Ok(builder)
226 }
227 }
228

229 impl AstDisplay for FnCall {
230 fn ast_fmt(&self, f: &mut fmt::Formatter, prefix: &Prefix) -> fmt
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::Result {
231 let names: Vec<String> = self.fn_name
232 .iter()
233 .map(|n| n.value.value.clone())
234 .collect();
235 let fn_name = names.join(".");
236 writeln!(f, "{}{}", prefix, fn_name)?;
237 self.values.ast_fmt(f, &prefix.add_leaf())?;
238

239 Ok(())
240 }
241 }

Figure C.2: Althread’s extended function call statement implementation
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Appendix D

Updated VM Code
The main modifications of the virtual machine (VM) for Althread to support user-defined func-
tions are provided below. This code is implemented in the vm/running_program.rs file.

1 // filepath: vm/running_program.rs
2

3 #[derive(Debug, Clone)]
4 struct StackFrame<’a> {
5 return_ip: usize, // the instruction pointer to return to
6 caller_fp: usize,
7 caller_code: &’a [Instruction], // the code of the caller
8 expected_return_type: DataType // the expected return type of the

function
9 }

10

11 #[derive(Debug, Clone)]
12 pub struct RunningProgramState<’a> {
13 pub name: String,
14

15 memory: Memory,
16 code: &’a ProgramCode, // full code
17 current_code: &’a [Instruction], // current executing code
18 instruction_pointer: usize,
19 pub id: usize,
20 pub stdlib: Rc<Stdlib>,
21

22 pub user_functions: &’a HashMap<String, FunctionDefinition>,
23 call_stack: Vec<StackFrame<’a>>, // the call stack
24 frame_pointer: usize,
25 }
26

27 impl PartialEq for RunningProgramState<’_> {
28 fn eq(&self, other: &Self) -> bool {
29 self.id == other.id
30 && self.memory == other.memory
31 && self.name == other.name
32 && self.instruction_pointer == other.instruction_pointer
33 && self.frame_pointer == other.frame_pointer
34 && self.call_stack.len() == other.call_stack.len()
35 }
36 }
37

38 impl Hash for RunningProgramState<’_> {
39 fn hash<H: Hasher>(&self, state: &mut H) {
40 self.id.hash(state);
41 self.memory.hash(state);
42 self.instruction_pointer.hash(state);
43 }
44 }
45

46 impl<’a> RunningProgramState<’a> {
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47 pub fn new(
48 id: usize,
49 name: String,
50 code: &’a ProgramCode,
51 user_functions: &’a HashMap<String, FunctionDefinition>,
52 args: Literal,
53 stdlib: Rc<Stdlib>,
54 ) -> Self {
55 let arg_len = if let Literal::Tuple(v) = &args {
56 v.len()
57 } else {
58 panic!("args should be a tuple")
59 };
60

61 let memory = if arg_len > 0 { vec![args] } else { Vec::new() };
62

63 Self {
64 id,
65 name,
66 memory,
67 code,
68 current_code: &code.instructions,
69 instruction_pointer: 0,
70 stdlib,
71 user_functions,
72 call_stack: Vec::new(),
73 frame_pointer: 0,
74 }
75 }
76

77 pub fn current_state(&self) -> (&Memory, usize) {
78 (&self.memory, self.instruction_pointer)
79 }
80

81 pub fn current_instruction(&self) -> AlthreadResult<&Instruction> {
82 self.current_code
83 .get(self.instruction_pointer)
84 .ok_or(AlthreadError::new(
85 ErrorType::InstructionNotAllowed,
86 None,
87 format!(
88 "the current instruction pointer points to no instruction

(pointer:{}, program:{})",
89 self.instruction_pointer, self.name
90 ),
91 ))
92 }
93

94 pub fn has_terminated(&self) -> bool {
95 if let Some(inst) = self.current_instruction().ok() {
96 inst.is_end()
97 } else {
98 true
99 }

100 }
101

102 pub fn next_global(
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103 &mut self,
104 globals: &mut GlobalMemory,
105 channels: &mut Channels,
106 next_pid: &mut usize,
107 ) -> AlthreadResult<(GlobalActions, Vec<Instruction>)> {
108 let mut instructions = Vec::new();
109 let mut actions = Vec::new();
110 let mut wait = false;
111 let mut end = false;
112 loop {
113 let (at_actions, at_instructions) = self.next_atomic(globals,

channels, next_pid)?;
114

115 actions.extend(at_actions.actions);
116 instructions.extend(at_instructions);
117

118 if at_actions.wait {
119 wait = true;
120 break;
121 }
122 if at_actions.end {
123 end = true;
124 break;
125 }
126 if self.is_next_instruction_global() {
127 break;
128 }
129 }
130 Ok((GlobalActions { actions, wait, end }, instructions))
131 }
132

133 pub fn is_next_instruction_global(&mut self) -> bool {
134 self.current_instruction()
135 .map_or(true, |inst| !inst.control.is_local())
136 }
137

138 pub fn next_atomic(
139 &mut self,
140 globals: &mut GlobalMemory,
141 channels: &mut Channels,
142 next_pid: &mut usize,
143 ) -> AlthreadResult<(GlobalActions, Vec<Instruction>)> {
144 let mut instructions = Vec::new();
145

146 let mut result = GlobalActions {
147 actions: Vec::new(),
148 wait: false,
149 end: false,
150 };
151 // if the next instruction is not the start of an atomic block,

we execute the next instruction
152 if !self.current_instruction()?.is_atomic_start() {
153 instructions.push(self.current_instruction()?.clone());
154 let action = self.next(globals, channels, next_pid)?;
155 if let Some(action) = action {
156 if action == GlobalAction::Wait {
157 result.wait = true;
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158 } else if action == GlobalAction::EndProgram {
159 result.end = true;
160 } else {
161 result.actions.push(action);
162 }
163 }
164 return Ok((result, instructions));
165 }
166 // else we execute all the instructions until the end of the

atomic block
167 loop {
168 instructions.push(self.current_instruction()?.clone());
169 let action = self.next(globals, channels, next_pid)?;
170 if let Some(action) = action {
171 if action == GlobalAction::Wait {
172 result.wait = true;
173 break;
174 } else {
175 result.actions.push(action);
176 }
177 }
178 if self.current_instruction()?.is_atomic_end() {
179 break;
180 }
181 }
182 Ok((result, instructions))
183 }
184

185 fn next(
186 &mut self,
187 globals: &mut GlobalMemory,
188 channels: &mut Channels,
189 next_pid: &mut usize,
190 ) -> AlthreadResult<Option<GlobalAction>> {
191

192 let cur_inst = self.current_instruction()?.clone();
193

194 let mut action = None;
195

196 let pos_inc = match &cur_inst.control {
197 InstructionType::Empty => 1,
198 InstructionType::AtomicStart => 1,
199 InstructionType::AtomicEnd => 1,
200 InstructionType::Break {
201 unstack_len, jump, ..
202 } => {
203 for _ in 0..*unstack_len {
204 self.memory.pop();
205 }
206 *jump
207 }
208 InstructionType::JumpIf {
209 jump_false,
210 unstack_len,
211 } => {
212 let cond = self.memory.last().unwrap().is_true();
213 for _ in 0..*unstack_len {
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214 self.memory.pop();
215 }
216 if cond {
217 1
218 } else {
219 *jump_false
220 }
221 }
222 InstructionType::Jump(jump) => *jump,
223 InstructionType::Expression(exp) => {
224 let lit = exp.eval(&mut self.memory).map_err(|msg| {
225 AlthreadError::new(ErrorType::ExpressionError,

cur_inst.pos, msg)
226 })?;
227 self.memory.push(lit);
228 1
229 }
230 InstructionType::GlobalReads { variables, .. } => {
231 for var_name in variables.iter() {
232 self.memory.push(
233 globals
234 .get(var_name)
235 .expect(format!("global variable ’{}’ not

found", var_name).as_str())
236 .clone(),
237 );
238 }
239 1
240 }
241 InstructionType::GlobalAssignment {
242 identifier,
243 operator,
244 unstack_len,
245 } => {
246 let lit = self
247 .memory
248 .last()
249 .expect("Panic: stack is empty, cannot perform

assignment")
250 .clone();
251 for _ in 0..*unstack_len {
252 self.memory.pop();
253 }
254

255 let lit = operator
256 .apply(
257 &globals
258 .get(identifier)
259 .expect(format!("global variable ’{}’ not

found", identifier).as_str()),
260 &lit,
261 )
262 .map_err(str_to_expr_error(cur_inst.pos))?;
263

264 globals.insert(identifier.clone(), lit);
265 action = Some(GlobalAction::Write(identifier.clone()));
266 1
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267 }
268 InstructionType::LocalAssignment {
269 index,
270 unstack_len,
271 operator,
272 } => {
273 let lit = self
274 .memory
275 .last()
276 .expect("Panic: stack is empty, cannot perform

assignment")
277 .clone();
278 for _ in 0..*unstack_len {
279 self.memory.pop();
280 }
281

282 let len = self.memory.len();
283

284 self.memory[len - 1 - index] = operator
285 .apply(&self.memory[len - 1 - *index], &lit)
286 .map_err(str_to_expr_error(cur_inst.pos))?;
287 1
288 }
289 InstructionType::Unstack { unstack_len } => {
290 for _ in 0..*unstack_len {
291 self.memory.pop();
292 }
293 1
294 }
295 InstructionType::Declaration { unstack_len } => {
296 let lit = self
297 .memory
298 .last()
299 .expect("Panic: stack is empty, cannot perform

declaration with value")
300 .clone();
301 for _ in 0..*unstack_len {
302 self.memory.pop();
303 }
304 self.memory.push(lit);
305 1
306 }
307 InstructionType::RunCall { name, unstack_len } => {
308 let args = self
309 .memory
310 .last()
311 .expect("Panic: stack is empty, cannot run call")
312 .clone();
313 for _ in 0..*unstack_len {
314 self.memory.pop();
315 }
316 self.memory.push(Literal::Process(name.clone(), *next_pid

));
317 action = Some(GlobalAction::StartProgram(name.clone(), *

next_pid, args));
318 *next_pid += 1;
319 1
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320 }
321 InstructionType::EndProgram => {
322 if self.call_stack.is_empty() {
323 action = Some(GlobalAction::EndProgram);
324 0
325 } else {
326 let return_value = Literal::Null;
327 let frame = self.call_stack.pop().unwrap();
328 self.memory.truncate(self.frame_pointer);
329 self.frame_pointer = frame.caller_fp;
330 self.instruction_pointer = frame.return_ip;
331 self.current_code = &self.code.instructions;
332 self.memory.push(return_value);
333 0
334 }
335 }
336 InstructionType::Return {has_value} => {
337

338 let return_value = if *has_value {
339 self.memory.pop().expect("Stack empty, expected

return value")
340 } else {
341 Literal::Null
342 };
343

344

345 let frame = self.call_stack.pop().expect("Panic: stack is
empty, cannot perform return");

346

347 if return_value.get_datatype() != frame.
expected_return_type {

348 return Err(AlthreadError::new(
349 ErrorType::FunctionReturnTypeMismatch,
350 cur_inst.pos,
351 format!(
352 "expected {:?}, got {:?}",
353 frame.expected_return_type,
354 return_value.get_datatype()
355 ),
356 ));
357 }
358

359 self.memory.truncate(self.frame_pointer);
360

361 self.frame_pointer = frame.caller_fp;
362 self.instruction_pointer = frame.return_ip;
363 self.current_code = frame.caller_code;
364

365 self.memory.push(return_value);
366

367 0
368 }
369 InstructionType::FnCall {
370 variable_idx,
371 name,
372 arguments,
373 unstack_len,
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374 } => {
375 if let Some(v_idx) = variable_idx {
376 let v_idx = self.memory.len() - 1 - v_idx;
377 let mut lit = self
378 .memory
379 .get(v_idx)
380 .expect("Panic: stack is empty, cannot perform

function call")
381 .clone();
382

383 let interfaces = self.stdlib.get_interfaces(&lit.
get_datatype()).ok_or(

384 AlthreadError::new(
385 ErrorType::UndefinedFunction,
386 cur_inst.pos,
387 format!("Type {:?} has no interface available

", lit.get_datatype()),
388 ),
389 )?;
390

391 let fn_idx = interfaces.iter().position(|i| i.name ==

*name);
392 if fn_idx.is_none() {
393 return Err(AlthreadError::new(
394 ErrorType::UndefinedFunction,
395 cur_inst.pos,
396 format!("undefined function {}", name),
397 ));
398 }
399 let fn_idx = fn_idx.unwrap();
400 let interface = interfaces.get(fn_idx).unwrap();
401 let mut args = match &arguments {
402 None => self.memory.last().unwrap().clone(),
403 Some(v) => {
404 let mut args = Vec::new();
405 for i in 0..v.len() {
406 let idx = self.memory.len() - 1 - v[i];
407 args.push(self.memory.get(idx).unwrap().

clone());
408 }
409 Literal::Tuple(args)
410 }
411 };
412 let ret = interface.f.as_ref()(&mut lit, &mut args);
413

414 //update the memory with object literal
415 self.memory[v_idx] = lit;
416

417 for _ in 0..*unstack_len {
418 self.memory.pop();
419 }
420

421 self.memory.push(ret);
422 1
423 } else {
424 // currently, only the print function is implemented
425 if name == "print" {
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426 let lit = self
427 .memory
428 .last()
429 .expect("Panic: stack is empty, cannot

perform function call")
430 .clone();
431

432 for _ in 0..*unstack_len {
433 self.memory.pop();
434 }
435

436 let str_val = lit.into_tuple().unwrap_or_default
()

437 .iter()
438 .map(|lit| lit.to_string())
439 .collect::<Vec<_>>()
440 .join(",");
441 println!("{}", str_val);
442 action = Some(GlobalAction::Print(str_val));
443 self.memory.push(Literal::Null);
444 1
445 } else {
446 if let Some(func_def) = self.user_functions.get(name)

{
447

448 let args_tuple_lit = self.memory.pop().unwrap();
449 let arg_values = match args_tuple_lit {
450 Literal::Tuple(v) => v,
451 _ => {
452 return Err(AlthreadError::new(
453 ErrorType::RuntimeError,
454 cur_inst.pos,
455 format!("function {} expects a tuple

as argument", name),
456 ));
457 }
458 };
459

460 self.call_stack.push(StackFrame {
461 return_ip: self.instruction_pointer + 1,
462 caller_fp: self.frame_pointer,
463 caller_code: self.current_code,
464 expected_return_type: func_def.return_type.

clone(),
465 });
466

467 self.frame_pointer = self.memory.len();
468

469 for arg in arg_values {
470 self.memory.push(arg);
471 }
472

473 self.current_code = &func_def.body;
474 self.instruction_pointer = 0;
475

476 0
477 } else {
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478 return Err(AlthreadError::new(
479 ErrorType::UndefinedFunction,
480 cur_inst.pos,
481 format!("undefined function {}", name),
482 ));
483 }
484 }
485 }
486 }
487 InstructionType::WaitStart { .. } => 1,
488 InstructionType::Wait {
489 unstack_len, jump, ..
490 } => {
491 let cond = self.memory.last().unwrap().is_true();
492 for _ in 0..*unstack_len {
493 self.memory.pop();
494 }
495 if cond {
496 1
497 } else {
498 action = Some(GlobalAction::Wait);
499 *jump
500 }
501 }
502 InstructionType::Destruct => {
503 // The values are in a tuple on the top of the stack
504 let tuple = self
505 .memory
506 .pop()
507 .expect("Panic: stack is empty, cannot destruct")
508 .into_tuple()
509 .expect("Panic: cannot convert to tuple");
510 for val in tuple.into_iter() {
511 self.memory.push(val);
512 }
513 1
514 }
515 InstructionType::Push(literal) => {
516 self.memory.push(literal.clone());
517 1
518 }
519 InstructionType::Send {
520 channel_name,
521 unstack_len,
522 } => {
523 let value = self
524 .memory
525 .last()
526 .expect("Panic: stack is empty, cannot send")
527 .clone();
528

529 for _ in 0..*unstack_len {
530 self.memory.pop();
531 }
532

533 let receiver = channels.send(self.id, channel_name.clone
(), value);
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534

535 action = Some(GlobalAction::Send(channel_name.clone(),
receiver));

536 1
537 }
538 InstructionType::ChannelPeek(channel_name) => {
539 let values = channels.peek(self.id, channel_name.clone())

;
540 match values {
541 Some(value) => {
542 self.memory.push(value.clone());
543 self.memory.push(Literal::Bool(true));
544 }
545 None => {
546 self.memory.push(Literal::Bool(false));
547 }
548 }
549 1
550 }
551 InstructionType::ChannelPop(channel_name) => {
552 let _ = channels.pop(self.id, channel_name.clone());
553 1
554 }
555 InstructionType::Connect {
556 sender_pid,
557 sender_channel,
558 receiver_pid,
559 receiver_channel,
560 } => {
561 let sender_pid = match *sender_pid {
562 None => self.id,
563 Some(idx) => self
564 .memory
565 .get(self.memory.len() - 1 - idx)
566 .expect("Panic: stack is empty, cannot connect")
567 .clone()
568 .to_pid()
569 .expect("Panic: cannot convert to pid"),
570 };
571 let receiver_pid = match receiver_pid {
572 None => self.id,
573 Some(idx) => self
574 .memory
575 .get(self.memory.len() - 1 - idx)
576 .expect("Panic: stack is empty, cannot connect")
577 .clone()
578 .to_pid()
579 .expect("Panic: cannot convert to pid"),
580 };
581

582 let is_data_waiting = channels
583 .connect(
584 sender_pid,
585 sender_channel.clone(),
586 receiver_pid,
587 receiver_channel.clone(),
588 )

49



589 .map_err(|msg| {
590 AlthreadError::new(ErrorType::RuntimeError,

cur_inst.pos, msg)
591 })?;
592 // A connection has the same effect as a send globally,

if some data was waiting to be sent
593 if is_data_waiting {
594 action = Some(GlobalAction::Send(
595 sender_channel.clone(),
596 Some(ReceiverInfo {
597 program_id: receiver_pid,
598 channel_name: receiver_channel.clone(),
599 }),
600 ));
601 }
602 1
603 }
604 _ => panic!("Instruction ’{:?}’ not implemented", cur_inst.

control),
605 };
606 let new_pos = (self.instruction_pointer as i64) + pos_inc;
607 if new_pos < 0 {
608 return Err(AlthreadError::new(
609 ErrorType::RuntimeError,
610 None,
611 "instruction pointer is becomming negative".to_string(),
612 ));
613 }
614 self.instruction_pointer = new_pos as usize;
615 Ok(action)
616 }
617 }

Figure D.1: Althread’s VM implementation updated to support user-defined functions.
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Appendix E

Tests

1 fn fibonacci_recursive(n: int, a: int, b: int) -> int {
2 if n == 0 {
3 return a;
4 } else {
5 return fibonacci_recursive(n - 1, b, a + b);
6 }
7 }
8

9 fn fibonacci_iterative(n: int, a: int, b: int) -> int {
10 for i in 1..n {
11 let c = a + b;
12 a = b;
13 b = c;
14 }
15 return b;
16 }
17

18 main {
19 let n = 10;
20 let res = fibonacci_recursive(n, 0, 1);
21 print("Fibonacci recursive of " + n + ": " + res);
22

23 let res = fibonacci_iterative(n, 0, 1);
24 print("Fibonacci iterative of " + n + ": " + res);
25 }
26

27 // Outputs:
28 // Fibonacci recursive of 10: 55
29 // Fibonacci iterative of 10: 55

Figure E.1: Testing user-defined functions by implementing both recursive and iterative
versions of the Fibonacci sequence.

1 shared {
2 let A = 1;
3 let B = 0;
4 let Start = false;
5 let WorkersFinished = 0; // Counts finished workers
6 }
7

8 fn process_message(value: int, flag: bool) -> void {
9 print("Processing message: value=" + value + ", flag=" + flag);

10 atomic {
11 if flag {
12 A = value;
13 } else {
14 B = value;
15 }
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16 WorkersFinished += 1;
17 }
18 }
19

20 fn verify_state() -> bool {
21 return (A == 125 && B == 125);
22 }
23

24 program Worker() {
25 wait Start;
26 wait receive in (x, y) => {
27 process_message(x, y);
28 };
29 }
30

31 main {
32 let worker1 = run Worker();
33 let worker2 = run Worker();
34

35 channel self.out (int, bool)> worker1.in;
36 channel self.out2 (int, bool)> worker2.in;
37

38 atomic { Start = true; }
39

40 send out(125, true);
41 send out2(125, false);
42

43 // Waits for both workers to finish processing
44 wait WorkersFinished == 2;
45

46 if verify_state() {
47 print("Channel test successful!");
48 } else {
49 print("Channel test failed!");
50 }
51 }
52

53 // Output:
54 // Processing message: value=125, flag=true
55 // Processing message: value=125, flag=false
56 // Channel test successful!
57 // or
58 // Processing message: value=125, flag=false
59 // Processing message: value=125, flag=true
60 // Channel test successful!

Figure E.2: This test demonstrates the use of atomic blocks, conditional statements, and
access to shared variables in user-defined functions. Two worker processes are spawned,
each waiting to receive a message. Upon receiving a message, each worker updates
shared variables within an atomic block to ensure that updates are performed without
interference from other processes.
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